Team:Berkeley/Project
From 2012.igem.org
Line 73: | Line 73: | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Revision as of 19:18, 2 October 2012
MiCodes: Enabling library screens with microscopy by connecting genotypes to observable phenotypes
Many applications in synthetic biology demand precise control over subcellular localization, cell morphology, motility, and other such phenotypes that are only observable via microscopy. At present, engineering these properties is challenging due in large part to the inherent throughput limitation imposed by microscopy. We have developed a strategy that enables high-throughput library screening with microscopy by coupling a unique fluorescence signature with each genotype present in a library. These MiCodes (microscopy barcodes) are generated by targeting combinations of fluorophores to several organelles within yeast, and they eliminate the need to isolate and observe clonal populations separately. MiCodes can potentially scale to library sizes of 10^6 or more, and their analysis can be largely automated using existing image processing software. As a proof of principle, we applied MiCodes to the problem of finding unique pairs of protein-protein interaction parts.