Team:Johns Hopkins-Wetware/Project
From 2012.igem.org
m |
|||
Line 52: | Line 52: | ||
</div> | </div> | ||
<div class="content"> | <div class="content"> | ||
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2012/3/33/Ethanol-splash.png" class="wrap left" width="500px"> |
<p> | <p> | ||
In industrial fermentation, the buildup of toxic intermediates and byproducts keeps productivity from reaching its full potential. In yeast, ethanol toxicity is the major chemical stress. To reduce ethanol stress, we constructed an ethanol-level self-regulation system consisting of the human cytochrome p450 CYP2E1 driven by a library of ethanol-induced promoters. CYP2E1 catalyzes the conversion of ethanol to acetaldehyde and then to acetate. When the ethanol level exceeds the optimal level, expression of CYP2E1 is triggered, which breaks down the excess ethanol. | In industrial fermentation, the buildup of toxic intermediates and byproducts keeps productivity from reaching its full potential. In yeast, ethanol toxicity is the major chemical stress. To reduce ethanol stress, we constructed an ethanol-level self-regulation system consisting of the human cytochrome p450 CYP2E1 driven by a library of ethanol-induced promoters. CYP2E1 catalyzes the conversion of ethanol to acetaldehyde and then to acetate. When the ethanol level exceeds the optimal level, expression of CYP2E1 is triggered, which breaks down the excess ethanol. | ||
Line 62: | Line 62: | ||
</div> | </div> | ||
<div class="content"> | <div class="content"> | ||
- | <img src=" | + | <img src="https://static.igem.org/mediawiki/2012/a/af/Optogenetic-protein-control-diagram.png" class="wrap right" width="500px"> |
<p> | <p> | ||
The ability to quickly activate and deactivate proteins can be used to regulate flux through a biosynthetic pathway in order to minimize stress on the organism and possibly optimize yield. The use of light as a control mechanism has the advantages of being fast-acting, reversible, and amenable to automation in industrial applications. To demonstrate the ability to control proteins using light, we constructed a system for light-induced cell cycle arrest in yeast. We used the two-protein ePDZ/LOVpep light-induced dimerization system designed by Glotzer (citation) in two modules: One demonstrating light-induced activation of protein function by restoring a complete protein from two non-functional halves, and the other demonstrating light-induced deactivation of protein function by protein re-localization. | The ability to quickly activate and deactivate proteins can be used to regulate flux through a biosynthetic pathway in order to minimize stress on the organism and possibly optimize yield. The use of light as a control mechanism has the advantages of being fast-acting, reversible, and amenable to automation in industrial applications. To demonstrate the ability to control proteins using light, we constructed a system for light-induced cell cycle arrest in yeast. We used the two-protein ePDZ/LOVpep light-induced dimerization system designed by Glotzer (citation) in two modules: One demonstrating light-induced activation of protein function by restoring a complete protein from two non-functional halves, and the other demonstrating light-induced deactivation of protein function by protein re-localization. | ||
Line 68: | Line 68: | ||
</div> | </div> | ||
<div class="spacer"> | <div class="spacer"> | ||
- | <a href="#header"><img src=" | + | <a href="#header"><img src="https://static.igem.org/mediawiki/2012/5/5f/To-the-top.png" alt="to the top"/></a> |
</div> | </div> | ||
<div class="content_header"> | <div class="content_header"> |
Revision as of 17:12, 30 September 2012