Team:Amsterdam/practices/results

From 2012.igem.org

(Difference between revisions)
Line 15: Line 15:
<h4>Experts in biotechnology</h4>
<h4>Experts in biotechnology</h4>
[[File:Amsterdam_practices_1.jpg|300px|right|thumb|Figure 1: Presenting our project in an early stage to the experts at the UvA]]
[[File:Amsterdam_practices_1.jpg|300px|right|thumb|Figure 1: Presenting our project in an early stage to the experts at the UvA]]
-
In the first month of our project we organized presentations at both universities (UvA and VU) and invited scientists from the departments of [http://www.falw.vu.nl/nl/onderzoek/molecular-cell-biology/ ''Molecular Cell Biology and the Swammerdam Institute for Life Sciences (SILS)]. During these presentations we explained how we wanted to realize our project, the Cellular Logbook. We proposed our designed molecular mechanisms of the Cellular Logbook to these experts. Although most feedback confirmed the neatness of our project design, we received some relevant feedback:
+
In the first month of our project we organized presentations at both universities (UvA and VU) and invited scientists from the departments of [http://www.falw.vu.nl/nl/onderzoek/molecular-cell-biology/ ''Molecular Cell Biology] and the [http://sils.uva.nl/ ''Swammerdam Institute for Life Sciences (SILS)'']. During these presentations we explained how we wanted to realize our project, the Cellular Logbook. We proposed our designed molecular mechanisms of the Cellular Logbook to these experts. Although most feedback confirmed the neatness of our project design, we received some relevant feedback:
* Low concentrations of IPTG may (1-100 µM) not enter the cell, because of the phenomenon called ‘inducer exclusion’. In this case, glucose transport leads to phosphorylation of a compound of the phosphotransferase system (PTS), which in turn blocks the lacY transporter of IPTG. During our experiments we prevented this from happening by using higher concentrations of IPTG.
* Low concentrations of IPTG may (1-100 µM) not enter the cell, because of the phenomenon called ‘inducer exclusion’. In this case, glucose transport leads to phosphorylation of a compound of the phosphotransferase system (PTS), which in turn blocks the lacY transporter of IPTG. During our experiments we prevented this from happening by using higher concentrations of IPTG.

Revision as of 01:50, 27 September 2012