Team:USP-UNESP-Brazil/Associative Memory/Modeling

From 2012.igem.org

(Difference between revisions)
Line 14: Line 14:
\begin{align}
\begin{align}
-
\frac{d}{dt} N_{d} &= r(N_{d}+N_{u})\Big[1 - \frac{(N_{d}+N_{u})}{K}\Big] - \alpha A N_{d} + \beta N_{u} \\
+
\frac{d}{dt} N_{d} &= rN_{t}\Big[1 - \frac{N_{t}}{K}\Big] - \alpha A N_{d} + \beta N_{u} \\
\frac{d}{dt} N_{u} &= \alpha A N_{1d} - \beta N_{u} \\
\frac{d}{dt} N_{u} &= \alpha A N_{1d} - \beta N_{u} \\
-
\frac{d}{dt} A &= \kappa_{u} N_{u} + \kappa_{d} N_{d} - \alpha A N_{d} - \lambda A
+
\frac{d}{dt} A &= \kappa_{u} N_{u} + \kappa_{d} N_{d} - \alpha A N_{d} - \lambda A \\
 +
N_{t} &= N_{d} + N_{u}
\end{align}
\end{align}
\begin{align}
\begin{align}
-
\frac{d}{dt}N_{Ad} &= r(N_{Ad}+N_{Au})\Big[1 - \frac{(N_{Ad}+N_{Au})}{K}\Big] - \alpha_A A N_{Ad} + (\beta_A + \phi_B B)N_{Au} \\
+
\frac{d}{dt}N_{Ad} &= rN_{At}\Big[1 - \frac{N_{At}}{K}\Big] - \alpha_A A N_{Ad} + (\beta_A + \phi_B B)N_{Au} \\
-
\frac{d}{dt}N_{Bd} &= r(N_{Bd}+N_{Bu})\Big[1 - \frac{(N_{Bd}+N_{Bu})}{K}\Big] - \alpha_B A N_{Bd} + (\beta_B + \phi_A A)N_{Bu} \\
+
\frac{d}{dt}N_{Bd} &= rN_{Bt}\Big[1 - \frac{N_{Bt}}{K}\Big] - \alpha_B A N_{Bd} + (\beta_B + \phi_A A)N_{Bu} \\
\frac{d}{dt}N_{Au} &= \alpha_A A N_{Ad} - \beta_A N_{Au} - \phi_B B N_{Au}\\
\frac{d}{dt}N_{Au} &= \alpha_A A N_{Ad} - \beta_A N_{Au} - \phi_B B N_{Au}\\
\frac{d}{dt}N_{Bu} &= \alpha_B B N_{Bd} - \beta_B N_{Bu} - \phi_A A N_{Bu} \\
\frac{d}{dt}N_{Bu} &= \alpha_B B N_{Bd} - \beta_B N_{Bu} - \phi_A A N_{Bu} \\
\frac{d}{dt}A &= \kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} \\
\frac{d}{dt}A &= \kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} \\
-
\frac{d}{dt}B &= \kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au}  
+
\frac{d}{dt}B &= \kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} \\
 +
N_{At} &= N_{Ad}+N_{Au} \\
 +
N_{Bt} &= N_{Bd}+N_{Bu}
\end{align}
\end{align}

Revision as of 19:35, 26 September 2012