Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 47: Line 47:
</ul>
</ul>
</p>
</p>
-
<p>To estimate the concentration of the variables, we need the volume of <em>''E. coli''</em>. According to [2]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0.7*10<sup>−15</sup><em>L</em></span><br /> Using this estimate, it is possible to calculate the concentration of one molecule inside the bacteria in molar concentration <br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6*10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br /></p>
+
<p>To estimate the concentration of the variables, we need the volume of <em>''E. coli''</em>. According to [2] $V_{ec} = 0.7 \hspace{0.2cm}(\mu m)^3 = 0.7$ $10^{-15} L$. Using this estimate, it is possible to calculate the concentration of one molecule inside the bacteria in molar concentration <br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6*10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br /></p>
\begin{align}
\begin{align}
-
[1 molec] = \frac{1}{0.7*10^{-15} L} = \frac{1}{6*10^{23} 0.7*10^{-15}}M \simeq 10^{-9} M = 1 nM
+
[1 molec] = \frac{1}{0.7*10^{-15} L} = \frac{1}{6*10^{23} 0.7*10^{-15}}M \simeq 1 nM
\end{align}
\end{align}

Revision as of 18:54, 26 September 2012