Team:SJTU-BioX-Shanghai/Project/project2.2
From 2012.igem.org
(→Biosynthesis - Fatty Acid) |
(→Biosynthesis - Fatty Acid) |
||
Line 33: | Line 33: | ||
------------------------------------------------------------------------ | ------------------------------------------------------------------------ | ||
- | + | ==Background== | |
Fatty acid derivatives are to emerge as prominent fuels in the marketplace. Their high energy density and low water solubility make them promising alternatives to fossil fuel as transportation fuels. Biosynthesis, among all the biofuels production methods, is the one most sustainable, environmental friendly and less controversial. | Fatty acid derivatives are to emerge as prominent fuels in the marketplace. Their high energy density and low water solubility make them promising alternatives to fossil fuel as transportation fuels. Biosynthesis, among all the biofuels production methods, is the one most sustainable, environmental friendly and less controversial. | ||
Line 51: | Line 51: | ||
FabG, FabI, FabZ play significant roles in the elongation of carbon chain of fatty acyl-ACP. It is TesA that processes fatty acyl-ACP into valuable products. Therefore, we overexpress these four enzymes which together would finally make it possible to efficiently produce fatty acids with longer carbon chains which are much more preferable biofuel precursors. | FabG, FabI, FabZ play significant roles in the elongation of carbon chain of fatty acyl-ACP. It is TesA that processes fatty acyl-ACP into valuable products. Therefore, we overexpress these four enzymes which together would finally make it possible to efficiently produce fatty acids with longer carbon chains which are much more preferable biofuel precursors. | ||
- | + | ==Design of Experiment== | |
Mechanism beneath our idea suggests the ''Membrane Magic'' project enjoys two fundamental privileges: the Priority to Exportation and the Refinement of Interaction. | Mechanism beneath our idea suggests the ''Membrane Magic'' project enjoys two fundamental privileges: the Priority to Exportation and the Refinement of Interaction. | ||
- | + | ===The Priority to Exportation=== | |
The fatty acid synthesis is terminated by the hydrolysis of fatty acyl-ACP and the release of free fatty acids into cytoplasm. We suppose TesA anchored on membrane could effectively increase the concentration of fatty acids near membrane, which in turn, facilitates the transmembrane transportation of fatty acids. Higher level of fatty acids in the culture medium make it easier to obtain and purify product and more suitable for Industrialized production. On the other hand, TesA removes fatty acyl-ACP from the reaction and thus, according to Le Chatelie principle, shifts the chemical equilibrium to accelerate and to accumulate more fatty acids. | The fatty acid synthesis is terminated by the hydrolysis of fatty acyl-ACP and the release of free fatty acids into cytoplasm. We suppose TesA anchored on membrane could effectively increase the concentration of fatty acids near membrane, which in turn, facilitates the transmembrane transportation of fatty acids. Higher level of fatty acids in the culture medium make it easier to obtain and purify product and more suitable for Industrialized production. On the other hand, TesA removes fatty acyl-ACP from the reaction and thus, according to Le Chatelie principle, shifts the chemical equilibrium to accelerate and to accumulate more fatty acids. | ||
To identify and to evaluate the priority of products to exportation, controlled experiments were designed and conducted. Wild type ''E.coli'' and ''E.coli'' expressing free-diffuse TesA were used as control groups. TesA was fused with transmembrane protein No.1 as stated in the Construction and the fusion protein was expressed in experimental group. | To identify and to evaluate the priority of products to exportation, controlled experiments were designed and conducted. Wild type ''E.coli'' and ''E.coli'' expressing free-diffuse TesA were used as control groups. TesA was fused with transmembrane protein No.1 as stated in the Construction and the fusion protein was expressed in experimental group. | ||
- | + | ===The Refinement of Interaction=== | |
Enzymes fused with membrane anchors will be directed to the membrane as expected right after their translation. Thus, the distribution of enzymes is restricted to the 2D membrane rather than diffusing randomly throughout the cytoplasm. Due to spatial restriction, we expect the receptor-ligand interaction that we employ to form enzymes cluster occurs at a higher frequency comparing to scaffolds in other forms. Moreover, the interaction could be stabilized by phospholipid around transmembrane domain. We believe a tandem of enzymes involved in sequential reactions could be established on the membrane swiftly and orderly. | Enzymes fused with membrane anchors will be directed to the membrane as expected right after their translation. Thus, the distribution of enzymes is restricted to the 2D membrane rather than diffusing randomly throughout the cytoplasm. Due to spatial restriction, we expect the receptor-ligand interaction that we employ to form enzymes cluster occurs at a higher frequency comparing to scaffolds in other forms. Moreover, the interaction could be stabilized by phospholipid around transmembrane domain. We believe a tandem of enzymes involved in sequential reactions could be established on the membrane swiftly and orderly. | ||
Line 69: | Line 69: | ||
//上图 | //上图 | ||
- | + | ==Result and Discussion== | |
Excitingly, the fatty acid biosynthesis was accelerated sharply by gathering downstream enzymes through interacting protein domains. The results showed that the production of Fatty acid was enhanced significantly by more than 20 fold through recruiting our membrane accelerator system, indicating a promising application prospect in biofuel production. | Excitingly, the fatty acid biosynthesis was accelerated sharply by gathering downstream enzymes through interacting protein domains. The results showed that the production of Fatty acid was enhanced significantly by more than 20 fold through recruiting our membrane accelerator system, indicating a promising application prospect in biofuel production. | ||
Line 79: | Line 79: | ||
- | + | ===1. WT, F-TesA and M-TesA=== | |
20 hours after induction, ''E.coli'' expressing membrane anchored TesA experienced a 50% increase in fatty acids content of both supernatant and sedimentation, compared with E.coli expressing free TesA. Fatty acids yielded from sedimentation went up to 5.02mg/(L·OD) and that from supernatant 0.71mg/(L·OD). | 20 hours after induction, ''E.coli'' expressing membrane anchored TesA experienced a 50% increase in fatty acids content of both supernatant and sedimentation, compared with E.coli expressing free TesA. Fatty acids yielded from sedimentation went up to 5.02mg/(L·OD) and that from supernatant 0.71mg/(L·OD). | ||
Line 85: | Line 85: | ||
We also witnessed a slight decrease in E.coli expressing free TesA compared with the wildtype, which testifies the statement in a previous study that high levels of TesA inhibits fatty acids synthesis activity but could enhance the activity at low concentrations. | We also witnessed a slight decrease in E.coli expressing free TesA compared with the wildtype, which testifies the statement in a previous study that high levels of TesA inhibits fatty acids synthesis activity but could enhance the activity at low concentrations. | ||
- | + | ===2. WT, F-TesA, FabG, FabI, FabZ and M-TesA, FabG, FabI, FabZ=== | |
FabG, FabI, FabZ play significant roles in the elongation of carbon chain of fatty acyl-ACP. We tried to decrease the distance between the product by linking enzymes to aggregated membrane proteins in order to accelerate the reaction and increase the turnover per unit time. This would finally make it possible to efficiently produce fatty acids with longer carbon chains which are much more preferable biofuel precursors. | FabG, FabI, FabZ play significant roles in the elongation of carbon chain of fatty acyl-ACP. We tried to decrease the distance between the product by linking enzymes to aggregated membrane proteins in order to accelerate the reaction and increase the turnover per unit time. This would finally make it possible to efficiently produce fatty acids with longer carbon chains which are much more preferable biofuel precursors. | ||
We combined these two strategies together to optimize the productivity of the system we established. Notable increase in both diversity and amount of fatty acids were detected, which lends strong support to our hypothesis. | We combined these two strategies together to optimize the productivity of the system we established. Notable increase in both diversity and amount of fatty acids were detected, which lends strong support to our hypothesis. | ||
- | + | ==Future Direction== | |
Our study indicates a promising application prospect in biofuel production and further refinement could make it even brighter. FatA is another candidate thioesterasederived from Arabidopsis thaliana. The employment of C18-specific FatA enables the engineered biosynthesis system to produce fatty acids with even longer carbon chain. | Our study indicates a promising application prospect in biofuel production and further refinement could make it even brighter. FatA is another candidate thioesterasederived from Arabidopsis thaliana. The employment of C18-specific FatA enables the engineered biosynthesis system to produce fatty acids with even longer carbon chain. | ||
{{Template:12SJTU_footer}} | {{Template:12SJTU_footer}} |
Revision as of 16:20, 26 September 2012
| ||
|