Team:Colombia/Modeling/Scripting
From 2012.igem.org
(Difference between revisions)
(→RUST DIFFERENTIAL EQUATION SOLUTION) |
(→OPTIMIZATION) |
||
Line 650: | Line 650: | ||
qq(t) Concentration of Chitin | qq(t) Concentration of Chitin | ||
s(t) | s(t) | ||
- | ; | + | ; |
* | * | ||
alfc.lo=0.7; | alfc.lo=0.7; | ||
Line 864: | Line 864: | ||
* | * | ||
fobj Objective function | fobj Objective function | ||
- | ; | + | ; |
* | * | ||
*Steady state equations | *Steady state equations |
Revision as of 13:46, 26 September 2012
Template:Https://2012.igem.org/User:Tabima
Contents |
Scripting
RALSTONIA DIFFERENTIAL EQUATION SOLUTION
These scripts create the differential equations, find the steady state concetrations and then solve them by a 4th order Runge Kutta:
DIFFERANTIAL EQUATIONS DECLARATIONS
%THIS CODE CREATE ALL THE DIFFERENTIAL EQUATIONS FOR THE SYSTEM FOR %RASTONIA
function y=ecuaDifR(t,v) %---------Parameters------% global alfS %Basal concentration of the sensor phcS global alfRA %Basal concnetration of the comple pchA-pchR global alfR %Basal concentration of LuxR global alfI %Basal concentration of CI global alfCI %Basal concentration of CI global alfHA %Basal concnetration of HipA7 global alfHB %Basal concnetration of HipB global alfAS %Basal concnetration of Salycilic acid global gammaS %Degradation of the sensor pchS global gammaRA %Degradation of the complex pchR-pchA global gammaR %Degradation of LuxR global gammaI %Degradation of LuxI global gammaCI %Degradation of CI global gammaHA %Degradation of HipA7 global gammaHB %Degradation of HipB global gammaAS %Dergradation of Salycilic acid global mOHS %Kinetic constant for the detection of 3-OH-PAME by the sensor pchS (phosphorylation) global mSFR %Kinetic constant for the phosphorylation of the complex pchR-pchA by the sensor global mA %Kinetic constant for the activation of the promoter by the pchA global mIR %Kinetic constant for the formation of the complex LuxILuxR global mI %Constant that represent the union of the complex LuxILuxR with the promoter global mHAHB %Kinetic constant for the inhibition of HipA7 global betaI %Max production of LuxI global betaCI %Max production of CI global betaHB %Max peoduction of HipB global betaHA %Max production of HipA7 global betaAS %Max production of Salicylic acid global kA %Constant k of the hill ecuation for the promoter promoted by pchA global kIR %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR global kCI %Constant k of the hill equation for the promoter promoted by CI global hA %Hill constant for the promoters promoted by pchA global hIR %Hill constant for the promoter promoted by the complex IR global hCI %Hill constant fot the promoter CI global eI %Export factor of LuxI global jI %Import factor of LuxI global deltaI %Difusion of LuxI outside the cell global eAS %Export of Salicylic acid global numcel %number of cells if (t<(10) || ((t)>20)) OH=0; else OH=15; end
%------ Variables%------ S=v(1); %Cocentration of the sensor pchS the cell SF=v(2); %Concentration of phosphorylated sensor the cell RA=v(3); %Concentration of the comple pchR-pchA A=v(4); %Concentratio of the promoter avtivator pchA Ii=v(5); %Concentration of LuxI inside the cell Io=v(6); %Concentration of LuI outsied the cell IR=v(7); %Concentration of the complex LuxI-LuxR R=v(8);%Concentration of the protein CI CI=v(9);%Concentration of HipA7 HB=v(10);%Concnetratio of HipB HA=v(11);%Concentration of salicylic acid AS=v(12); %Concentratio of quitin monomers %---Equations---% dS=alfS- gammaS*S - mOHS*OH*S; %Change of the sensor pchS dSF = mOHS *OH*S - mSFR *SF*RA ; %Change of phosphorylated sensor dRA=alfRA - gammaRA*RA - mSFR*SF*RA;%Change of the comple pchR-pchA dA= mSFR*SF*RA-mA*A; %Change of the activator pchA inside the cell dIi= alfI+ (betaI*(A^hA))/(kA^hA+(A^hA)) -gammaI*Ii +jI*Io- eI*Ii- mIR*Ii*R; %Change of LuxI inside the cell dIo= numcel*(eI*Ii-jI*Io)-deltaI*Io; %Change of LuxI outside the cell dIR= mIR*Ii*R - mI*IR; %Change of the complex LuxI luxR dR= alfR-gammaR*R -mIR*Ii*R +(betaI*(A^hA))/(kA^hA+(A^hA)); %Change of LuxR dCI= alfCI -gammaCI*CI+ (betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI)) +(betaCI*(IR^hIR))/(kIR^hIR+(IR^hIR));%Change of CI dHB=alfHB-gammaHB*HB+(betaHB*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaHB*(IR^hIR))/(kIR^hIR+(IR^hIR))-mHAHB*HA^2*HB^2; %Chanche of HipB dHA=alfHA-gammaHA*HA+ (betaHA*(CI^hCI))/(kCI^hCI+(CI^hCI))-mHAHB*HA^2*HB^2; %Change of HipA7 dAS=alfAS-gammaAS*AS +(betaAS*(CI^hCI))/(kCI^hCI+(CI^hCI))-eAS*AS+(betaAS*(IR^hIR))/(kIR^hIR+(IR^hIR)); %Change of Salicylic acid y1(1)=dS; y1(2)=dSF; y1(3)=dRA; y1(4)=dA; y1(5)=dIi; y1(6)=dIo; y1(7)=dIR; y1(8)=dR; y1(9)=dCI; y1(10)=dHB; y1(11)=dHA; y1(12)=dAS; y=y1'; end
RUNGE KUTTA
%FILE THAT SOLVES THE DIFFERENTIAL EQUATION AND GRAPHS THEM alfS=0.9; %Basal concentration of the sensor pchS alfRA=0.9; %Basal concnetration of the complez pchA-pchR alfR=0.6; %Basal concentration of LuxR alfI=0.4; %Basal concentration of LuxI alfCI=0.5; %Basal concentration of CI alfHA=1; %Basal concnetration of HipA7 alfHB=0.4; %Basal concnetration of HipB alfAS=0.4; %Basal concnetration of Salycilic acid gammaS=1; %Degradation of Chitinase inside the cell gammaRA=1; %Degradation of chitoporin gammaR=1; %Degradation of LuxR gammaI=1; %Degradation of LuxI gammaCI=1; %Degradation of CI gammaHA=1; %Degradation of HipA7 gammaHB=4; %Degradation of HipB gammaAS=1; %Dergradation of Salycilic acid mOHS=4; %Kinetic constant for the formation of the phoshorilation of the sensor mSFR=2.6; %Kinetic constant of the reaction of the phosphorilarion of the comple R mA=3.5; %Kinetic constant for the activation by A mIR=3; %Kinetic constant for the formation of the complex LuxILuxR mI=3; %Constant that represent the union of the complex LuxILuxR with the promoter mHAHB=12; %Kinetic constant for the inhibition of HipA7 betaI=10; %Max production of LuxI betaCI=9.96; %Max production of CI betaHB=9.95; %Max production of HipB betaHA=10; %Max production of HipA7 betaAS=11.2; %Max production of Salicylic acid kA=0.1; %Constant k of the hill ecuation for the promoter promoted by S kIR=0.39; %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR kCI=0.055; %Cosntant k of the hill equation for the promoter promoted by CI hA=1.2; %Hill constant for the promoters promoted by S hIR=3.4; %Hill constant for the promoter promoted by the complex IR hCI=2.3; %Hill constant fot the promoter CI eI=0.5; %Export factor of LuxI jI=0.8; %Import factor of LuxI deltaI=0.2;%Difusion of LuxI outside the cell eAS=0.8; numcel=1; %number of cells %----%
h=100; %Tiempo maximo m=0.01; %Longitud de paso [s] t=0:m:h; %Vector tiempo xi=[1,1,1,1,1,1,1,1,1,1,1,1]; y=fsolve(@CondInR,xi);
conInd=y; l=(0:m:h)'; %Vector de tiempo x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia el tiempo OH=zeros(1,length(l)); x(1,:)=conInd; for k=1:length(l)-1 xk=x(k,:); %Captura de la ultima posicion de la matirz, es decir, los %valores actuales de las variables k1=ecuaDifR(l(k),xk); %Primera pendiente del metodo de RK4 k2=ecuaDifR(l(k)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 k3=ecuaDifR(l(k)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 k4=ecuaDifR(l(k)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables %xk1=xk+m*ecuaDif(l(k),xk)'; %Method of Newton xk2=zeros(1,length(xk1)); for p=1:length(xk1) if(xk1(p)<0.00000001) xk2(p)=0; else xk2(p)=xk1(p); end end x(k+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz end
for j=1:length(l) if (l(j)<(10) || l(j)>(20)) OH(j)=0; else OH(j)=15; end end
S=x(:,1); SF=x(:,2); RA=x(:,3); A=x(:,4); Ii=x(:,5); Io=x(:,6); IR=x(:,7); R=x(:,8); CI=x(:,9); HB=x(:,10); HA=x(:,11); AS=x(:,12);
figure(1) plot(l,S,l,SF) legend('Sensor (pchS)',' Phosporilated pchS') xlabel('Time') ylabel('Concetratio (micromolar)') title('Response of Sensor pchS') figure(5) plot(l,RA,l,A) legend('Complex pchR-pchA','Activator pchA') xlabel('Time') ylabel('Concetration (micromolar)') title('Activator response') figure(2) plot (l,R,l,Ii,l,Io,l,IR) legend('LuxR','LuxI nside the cell','LuxI outside the cell','Complex(Lux-LuxR)') xlabel('Time') ylabel('Concetration (micromolar)') title('LuxI-LuxR system response') figure(3) plot (l,HA,l,HB) legend('Toxin HipA7','Antitoxin HipB') xlabel('Time') ylabel('Concetration (micromolar)') title('Toxin-Antitoxin module') figure(4) plot (l,OH,l,AS,l,CI) legend('3-OH-PAME','Salicylic acid','CI') xlabel('Time') ylabel('Concetration (micromolar)') title('CI and Salicylic Acid response')
RUST DIFFERENTIAL EQUATION SOLUTION
Chitin impulse function: This function returns the chitin concentration depending on the time imput
function answer = functionChi( t ) % answer=0; % if t>10 && t<20 % answer=15; % end % end
Differential equation declaration:
%THIS CODE CREATE ALL THE DIFFERENTIAL EQUATIONS FOR THE SYSTEM % function y=ecuaDif(t,v) %---------Parameters------% global alfA %Basal concentration of Chitinase inside the cell (micromolar) global alfP %Basal concnetration of chitoporin global alfC %Basal concentration of the CBP global alfR %Basal concentration of LuxR global alfI %Basal concentration of CI global alfCI %Basal concentration of CI global alfHA %Basal concnetration of HipA7 global alfHB %Basal concnetration of HipB global alfAS %Basal concnetration of Salycilic acid global alfCS global gammaA %Degradation of Chitinase inside the cell global gammaP %Degradation of chitoporin global gammaC %Degradation concentration of the CBP global gammaR %Degradation of LuxR global gammaI %Degradation of LuxI global gammaCI %Degradation of CI global gammaHA %Degradation of HipA7 global gammaHB %Degradation of HipB global gammaAS %Dergradation of Salycilic acid global gammaCS %Degradation of the complex CS global mCS %Kinetic constant for the formation of the complex CS global mCSQ %Kinetic constant of the reaction of the complex CS with the chitin global mAQQ %Kinetic constant for the reaction of the chitinase and th chitin global mIR %Kinetic constant for the formation of the complex LuxILuxR global mI %Constant that represent the union of the complex LuxILuxR with the promoter global mHAHB %Kinetic constant for the inhibition of HipA7 global betaP %Max production of the chitoporin global betaA %Max production of chitinase global betaI %Max production of LuxI global betaCI %Max production of CI global betaHB %Max peoduction of HipB global betaHA %Max production of HipA7 global betaAS %Max production of Salicylic acid global kS %Constant k of the hill ecuation for the promoter promoted by S global kIR %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR global kCI %Constant k of the hill equation for the promoter promoted by CI global hS %Hill constant for the promoters promoted by S global hIR %Hill constant for the promoter promoted by the complex IR global hCI %Hill constant fot the promoter CI global eA %Export factor of the chitinase global jQ %Import factor of the chitin monomers global deltaA %Difusion factor of the chinitanse outside the cell global eI %Export factor of LuxI global jI %Import factor of LuxI global deltaI %Difusion of LuxI outside the cell global Stotal %Total concentration of the sensor in the cell global eAS %Export of Salicylic acid global numcel %number of cells % % QQ=functionChi(t); % %------ Variables%------ % % C=v(1); %Cocentration of chitinase outside the cell CS=v(2); %Concentration of chitinase inside the cell P=v(3); %Concentration of chitiporin Ai=v(4); %Concentratio of chitin binding protein (CBP) Ao=v(5); %Concentration the complex CBP-s Q=v(6); %Concentration of LuxR Ii=v(7); %Concentration of LuxI inside the cell Io=v(8); %Concentration of LuI outsied the cell IR=v(9); %Concentration of the complex LuxI-LuxR R=v(10);%Concentration of the protein CI CI=v(11);%Concentration of HipA7 HB=v(12);%Concnetratio of HipB HA=v(13);%Concentration of salicylic acid AS=v(14); %Concentratio of quitin monomers % % % %---Equations---% $ % S=Stotal-CS; % % % dC=alfC- gammaC*C - mCS*C*S; %Change of CBP dCS=alfCS+ mCS*C*S- mCSQ*CS*Q-gammaCS*CS; %Change of the complex CS dP=alfP - gammaP*P + (betaP*(S^hS))/(kS^hS+(S^hS));%Change of chitoporin dAi=(alfA- gammaA*Ai+ (betaA*(S^hS))/(kS^hS+(S^hS)))- eA*Ai; %Change of chitinase inside the cell dAo= eA*Ai-deltaA*Ao- mAQQ*Ao*QQ; %Change of chitinase outside the cell dQ= 2*jQ*P*(mAQQ*QQ*Ao)-mCSQ*CS*Q; %Change of chitin monomer inside the cell dIi= alfI+ (betaI*(S^hS))/(kS^hS+(S^hS)) -gammaI*Ii +jI*Io- eI*Ii- mIR*Ii*R; %Change of LuxI inside the cell dIo= numcel*(eI*Ii-jI*Io)-deltaI*Io; %Change of LuxI outside the cell dIR= mIR*Ii*R - mI*IR; %Change of the complex LuxI luxR dR= alfR-gammaR*R -mIR*Ii*R +(betaI*(S^hS))/(kS^hS+(S^hS)); %Change of LuxR dCI= alfCI -gammaCI*CI+ (betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI)) +(betaCI*(IR^hIR))/(kIR^hIR+(IR^hIR));%Change of CI dHB=alfHB-gammaHB*HB+(betaHB*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaHB*(IR^hIR))/(kIR^hIR+(IR^hIR))-mHAHB*HA^2*HB^2; %Chanche of HipB dHA=alfHA-gammaHA*HA-mHAHB*HA^2*HB^2+(betaHA*(CI^hCI))/(kCI^hCI+(CI^hCI)); %Change of HipA7 dAS=alfAS-gammaAS*AS +(betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaAS*(IR^hIR))/(kIR^hIR+(IR^hIR))-eAS*AS; %Change of Salicylic acid % y1(1)=dC; y1(2)=dCS; y1(3)=dP; y1(4)=dAi; y1(5)=dAo; y1(6)=dQ; y1(7)=dIi; y1(8)=dIo; y1(9)=dIR; y1(10)=dR; y1(11)=dCI; y1(12)=dHB; y1(13)=dHA; y1(14)=dAS; % y=y1'; % % end
Diferential equation solution
tic; % %File that solves the differential equations and graphs them % alfA = 0.9; %Basal concentration of Chitinase inside the cell (micromolar) alfP = 0.9; %Basal concnetration of chitoporin alfC = 0.9; %Basal concentration of the CBP alfR = 0.6; %Basal concentration of LuxR alfI = 0.4; %Basal concentration of LuxI alfCI = 0.5; %Basal concentration of CI alfHA = 1.4; %Basal concnetration of HipA7 alfHB = 0.4; %Basal concnetration of HipB alfAS = 0.4; %Basal concnetration of Salycilic acid alfCS=1.4; gammaA=1; %Degradation of Chitinase inside the cell gammaP=1; %Degradation of chitoporin gammaC=1; %Degradation concentration of the CBP gammaR=1; %Degradation of LuxR gammaI=1; %Degradation of LuxI gammaCI=1; %Degradation of CI gammaHA=1; %Degradation of HipA7 gammaHB=4; %Degradation of HipB gammaAS=0.8; %Dergradation of Salycilic acid gammaCS=1; %Degradation of the complex Cs mCS=13; %Kinetic constant for the formation of the complex CS mCSQ=12; %Kinetic constant of the reaction of the complex CS with the chitin mAQQ=0.2; %Kinetic constant for the reaction of the chitinase and th chitin mIR=3; %Kinetic constant for the formation of the complex LuxILuxR mI=3; %Constant that represent the union of the complex LuxILuxR with the promoter mHAHB=12; %Kinetic constant for the inhibition of HipA7 betaP=12; %Max production of the chitoporin betaA=10; %Max production of chitinase betaI=10; %Max production of LuxI betaCI=9.96; %Max production of CI betaHB=9.5; %Max production of HipB betaHA=11; %Max production of HipA7 betaAS=11.2; %Max production of Salicylic acid kS=0.08; %Constant k of the hill ecuation for the promoter promoted by S kIR=0.39; %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR kCI=0.055; %Cosntant k of the hill equation for the promoter promoted by CI hS=1; %Hill constant for the promoters promoted by S hIR=3.4; %Hill constant for the promoter promoted by the complex IR hCI=2.3; %Hill constant fot the promoter CI eA=0.5; %Export factor of the chitinase jQ=0.1; %Import factor of the chitin monomers deltaA=0.2; %Difusion factor of the chinitanse outside the cell eI=0.5; %Export factor of LuxI jI=0.8; %Import factor of LuxI deltaI=0.2;%Difusion of LuxI outside the cell Stotal= 1.5; %Total concentration of the sensor in the cell eAS=0.8; numcel=1; %number of cells % h=100; %Tiempo maximo % m=0.01; %Longitud de paso [s] % t=0:m:h; %Vector tiempo % xi=[1,1,1,1,1,1,1,1,1,1,1,1,1,1]; % y=fsolve(@CondIn,xi); % % conInd=y; % % % l=(0:m:h)'; %Vector de tiempo % x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia la longitud % QQ=zeros(1,length(l)); % x1=conInd; % for k=1:length(l)-1 % xk=x(k,:); %Captura de la ultima posicion de la matirz, es decir, los %valores actuales de las variables k1=ecuaDif(l(k),xk); %Primera pendiente del metodo de RK4 k2=ecuaDif(l(k)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 k3=ecuaDif(l(k)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 k4=ecuaDif(l(k)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables %xk1=xk+m*ecuaDif(l(k),xk)'; %Method of Newton xk2=zeros(1,length(xk1)); for p=1:length(xk1) if(xk1(p)<0.00000001) xk2(p)=0; else xk2(p)=xk1(p); end end x(k+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz end % % % for j=1:length(l) % QQ(1,j)=functionChi(l(j)); % end % % C=x(:,1); CS=x(:,2); P=x(:,3); Ai=x(:,4); Ao=x(:,5); Q=x(:,6); Ii=x(:,7); Io=x(:,8); IR=x(:,9); R=x(:,10); CI=x(:,11); HB=x(:,12); HA=x(:,13); AS=x(:,14); % % figure(1) plot(l,C,l,CS,l,P,l,Ai,l,Ao,l,Q,l,QQ) legend('CBP','Complex Sensor(CBP)','Chitoporin','Chitinase inside the cell','Chitinase outside the cell','Chitin monomers','Chitin') xlabel('Time') ylabel('Concentration') title('Detection system substances') % figure(2) plot (l,R,l,Ii,l,Io,l,IR) legend('LuxR','LuxI Inside the cell','LuxI outside the cell','Complex LuxI-LuxR') xlabel('Time') ylabel('Concentration') title('LuxI-LuxR system substances') % figure(3) plot (l,HA,l,HB) legend('HipA7','HipB') xlabel('Time') ylabel('Concentration') title('Toxin-Antitoxin module substances') % figure(4) plot (l,QQ,l,AS,l ,CI) legend('QQ','Salicylic acid','CI') xlabel('Time') ylabel('Concentration') title('CI and Salicylic acid response') %
OPTIMIZATION
The optimization was done using the software GAMS. Here we present the code:
sets t /1*201/ ; * variable z Objective function ; * positive variables alfc constituive production of CBP alfp constitutive production chitoporin alfa constitutive production chitinase alfi basal production luxI alfr basal production luxR alfci basal production CI alfha basal production HipA7 alfhb basal production HipB alfas basal production Salicylic acid mcs Kinetic constant mcsq Kinetic constant maqq Kinetic constant mir Kinetic constant mi Kinetic constant mha Kinetic constant betap Maximal production of chitoporin betaa Maximal production of chitinase betai Maximal production of LuxI betahb Maximal production of HipB betaha Maximal production of HipA7 betaas Maximal production of Salicylic acid ks Hill's constant for the activation by S kir Hill's constant for the activation by IR hs Hill's constant for the activation by S hir Hill's constant for the activation by IR ea Export factor of chitinase jq Import factor of chitine deltaa Diffusion factor of chitinase ei Export factor of LuxI ji Import factor of LuxI deltai Difussion factor of LuxI stotal Total concetration of the sensor in the cell eas Export factor os Salicylic acid * c(t) Concentration of CBP cs(t) Concentration of complex CBP-S p(t) Concentration of chitoporin ai(t) Concentration of chitinase ao(t) Concentration of chitinase outside the cell q(t) Concentration of chitine monomer ii(t) Concentration of LuxI inside the cell io(t) Concentration of LuxI outside the cell ir(t) Concentration of complex LuxI-LuxR r(t) Concentration of LuxR ci(t) Concentration of CI hb(t) Concentration of HB ha(t) Concentration of HA as(t) Concentration of Salicylic Acid qq(t) Concentration of Chitin s(t) ; * alfc.lo=0.7; alfc.up=1.2; alfc.l=1; * alfp.lo=0.7; alfp.up=1.2; alfp.l=1; * alfa.lo=0.7; alfa.up=1.2; alfa.l=1; * alfi.lo=0.01; alfi.up=0.6; alfi.l=0.4; * alfr.lo=0.01; alfr.up=0.6; alfr.l=0.4; * alfci.lo=0.01; alfci.up=0.6; alfci.l=0.4; * alfha.lo=0.01; alfha.up=0.6; alfha.l=0.4; * alfhb.lo=0.01; alfhb.up=0.6; alfhb.l=0.4; * alfas.lo=0.01; alfas.up=0.6; alfas.l=0.4; * mcs.lo=50; mcs.up=1000; mcs.l=500; * mcsq.up=1000; mcsq.l=500; * maqq.up=1000; maqq.l=500; * mir.up=1000; mir.l=500; * mi.up=1000; mi.l=20; * mha.up=1000; mha.l=500; * betap.lo=5; betap.up=23; betap.l=14; * betaa.lo=5; betaa.up=23; betaa.l=14; * betai.lo=5; betai.up=23; betai.l=14; * betahb.lo=5; betahb.up=23; betahb.l=14; * betaha.lo=5; betaha.up=23; betaha.l=14; * betaas.lo=5; betaas.up=23; betaas.l=14; * ks.lo=0.01; ks.up=0.9; ks.l=0.05; * kir.lo=0.01; kir.up=0.9; kir.l=0.05; * hs.up=3; hs.l=1; * hir.up=5; hir.l=3; * ea.lo=0.01; ea.up=1; ea.l=0.05; * jq.lo=0.01; jq.up=1; jq.l=0.05; * deltaa.lo=0.01; deltaa.up=1; deltaa.l=0.05; * ei.lo=0.01; ei.up=1; ei.l=0.05; * ji.lo=0.01; ji.up=1; ji.l=0.05; * deltai.lo=0.01; deltai.up=1; deltai.l=0.05; * eas.lo=0.01; eas.up=1; eas.l=0.05; * stotal.lo=0.4; stotal.up=2.5; stotal.l=1; * c.l(t)=0.1616; cs.l(t)=0.738; p.l(t)=4.7233; ai.l(t)=3.1489; ao.l(t)=7.8722; q.l(t)=0; ii.l(t)=0.9662; io.l(t)=0.4831; ir.l(t)=3.6605; r.l(t)=1.2628; ci.l(t)=20.2; hb.l(t)=0.5722; ha.l(t)=2.5117; as.l(t)=0.16933; s.l(t)=1; * * scalar * gammaa /1/ gammac /1/ gammap /1/ gammar /1/ gammai /1/ gammaci /1/ gammaha /1/ gammahb /4/ gammaas /1/ gammacs /1/ * betaci /9.96/ kci /0.055/ hci /2.3/ * numcel /1/ * dt /0.5/ * * qq1 /0/ qq2 /20/ qq3 /60/ qq4 /5/
* equations * cbss Steady state equation of CBP css pss aiss aoss qss iiss ioss irss rss ciss hbss hass asss dc(t) Diferential equations dcs(t) dp(t) dai(t) dii(t) dio(t) dir(t) dr(t) dci(t) dhb(t) dha(t) das(t) dao1(t) dq1(t) dao2(t) dq2(t) dao3(t) dq3(t) sf(t) function of the change of S in the cell * res1 restricion 1 res2 restriction 2 res3 restriction 3 * * fobj Objective function ; * *Steady state equations * cbss.. alfc-gammac*c('1')-mcs*c('1')*s('1')=e=0; css.. mcs*c('1')*s('1')-mcsq*cs('1')*q('1')-gammacs*cs('1')=e=0; pss.. alfp-gammap*p('1')+ betap*(s('1')**hs)/(ks**hs+s('1')**hs)=e=0; aiss.. alfa- gammaa*ai('1')+ betaa* (s('1')**hs)/((ks**hs)+(s('1')**hs))-ea*ai('1')=e=0; aoss.. ea*ai('1')-deltaa*ao('1')=e=0; qss.. -mcsq*cs('1')*q('1')=e=0; iiss.. alfi + betai* (s('1')**hs)/((ks**hs)+ (s('1')**hs))-gammai*ii('1')+ji*io('1')-ei*ii('1')-mir*ii('1')*r('1')=e=0; ioss.. numcel*(ei*ii('1')-ji*io('1'))-deltai*io('1')=e=0; irss.. mir*ii('1')*r('1')-mi*ir('1')=e=0; rss.. alfr-gammar*r('1')- mir*ii('1')*r('1')+ betai* (s('1')**hs)/((ks**hs)+(s('1')**hs))=e=0; ciss.. alfci-gammaci*ci('1')+ betaci* (ci('1')**hci)/((kci**hci)+(ci('1')**hci))+ betaci* (ir('1')**hir)/((kir**hir)+(ir('1')**hir))=e=0; hbss.. alfhb-gammahb*hb('1')+ betahb* (ci('1')**hci)/((kci**hci)+(ci('1')**hci))+ betahb* (ir('1')**hir)/((kir**hir)+ (ir('1')**hir))-mha*power(ha('1'),2)*power(hb('1'),2)=e=0; hass.. alfha-gammaha*ha('1')+ betaha* (ci('1')**hci)/((kci**hci)+(ci('1')**hci))-mha*power(ha('1'),2)*power(hb('1'),2)=e=0; asss.. alfas-gammaas*as('1')+ betaas* (ci('1')**hci)/((kci**hci)+(ci('1')**hci))- eas*as('1')=e=0; * *Differential equations * dc(t).. alfc-gammac*c(t)-mcs*c(t)*s(t)=e=(c(t+1)-c(t))/dt; dcs(t).. mcs*c(t)*s(t)-mcsq*cs(t)*q(t)-gammacs*cs('1')=e=(cs(t+1)-cs(t))/dt ; dp(t).. alfp-gammap*p(t)+ betap* (s(t)**hs)/((ks**hs)+(s(t)**hs))=e=(p(t+1)-p(t))/dt; dai(t).. alfa- gammaa*ai(t)+ betaa* (s(t)**hs)/((ks**hs)+(s(t)**hs))-ea*ai(t)=e=(ai(t+1)-ai(t))/dt ; dii(t).. alfi + betai*(s(t)**hs)/((ks**hs)+(s(t)**hs))-gammai*ii(t)+ji*io(t)-ei*ii(t)-mir*ii(t)*r(t)=e=(ii(t+1)-ii(t))/dt; dio(t).. numcel*(ei*ii(t)-ji*io(t))-deltai*io(t)=e=(io(t+1)-io(t))/dt; dir(t).. mir*ii(t)*r(t)-mi*ir(t)=e=(ir(t+1)-ir(t))/dt; dr(t).. alfr-gammar*r(t)- mir*ii(t)*r(t)+ betai* (s(t)**hs)/((ks**hs)+(s(t)**hs))=e=(r(t+1)-r(t))/dt ; dci(t).. alfci-gammaci*ci(t)+ betaci* (ci(t)**hci)/((kci**hci)+(ci(t)**hci))+ betaci* (ir(t)**hir)/((kir**hir)+ (ir(t)**hir))=e=(ci(t+1)-ci(t))/dt ; dhb(t).. alfhb-gammahb*hb(t)+ betahb* (ci(t)**hci)/((kci**hci)+(ci(t)**hci))+ betahb* (ir(t)**hir)/((kir**hir)+(ir(t)**hir))-mha*power(ha(t),2)*power(hb(t),2)=e=(hb(t+1)-hb(t))/dt ; dha(t).. alfha-gammaha*ha(t)+ betaha* (ci(t)**hci)/((kci**hci)+(ci(t)**hci))-mha*power(ha(t),2)*power(hb(t),2)=e=(ha(t+1)-ha(t))/dt; das(t).. alfas-gammaas*as(t)+ betaas* (ci(t)**hci)/((kci**hci)+(ci(t)**hci))- eas*as(t)=e=(as(t+1)-as(t))/dt ; * *Differential equations depending on chitin impulse * dao1(t) $(ord(t)<51).. ea*ai(t)-deltaa*ao(t)-maqq*ao(t)*qq1=e=(ao(t+1)-ao(t))/dt; dao2(t)$(ord(t)>50 and ord(t)<151).. ea* ai(t) -deltaa*ao(t)-maqq*ao(t)*qq2=e=(ao(t+1)-ao(t))/dt; dao3(t) $(ord(t)>151 and ord(t)<201).. ea*ai(t)-deltaa*ao(t)-maqq*ao(t)*qq1=e=(ao(t+1)-ao(t))/dt; dq1(t)$(ord(t)<51).. 2*jq*p(t)*maqq*qq1*ao(t) -mcsq*cs('1')*q('1')=e=(q(t+1)-q(t))/dt; dq2(t)$(ord(t)>51 and ord(t)<151).. 2*jq*p(t)*maqq*qq2*ao(t) -mcsq*cs('1')*q('1')=e=(q(t+1)-q(t))/dt; dq3(t)$(ord(t)>151 and ord(t)<201).. 2*jq*p(t)*maqq*qq1*ao(t) -mcsq*cs('1')*q('1')=e=(q(t+1)-q(t))/dt; *S equation sf(t).. s(t)=e=stotal-cs(t); *Some restrictions res1.. ha('1')=g= hb('1'); res2.. hb('131')=g=ha('131'); res3.. ha('181')=g=hb('181'); *objetive function fobj.. z=e=power((as('1')-as('41')),2)+power((1.6*as('1')-as('111')),2)+ power((1.8*as('1')-as('121')),2)+power((1.1*as('1')-as('161')),2)+power((as('1')-as('181')),2) ; * option nlp=ipopt; model igem /all/; solve igem using nlp minimizing z;