Team:Colombia/Modeling/Scripting
From 2012.igem.org
(Difference between revisions)
(→RUST DIFFERENTIAL EQUATION SOLUTION) |
(→RUST DIFFERENTIAL EQUATION SOLUTION) |
||
Line 556: | Line 556: | ||
AS=x(:,14); | AS=x(:,14); | ||
- | % | + | % |
figure(1) | figure(1) | ||
plot(l,C,l,CS,l,P,l,Ai,l,Ao,l,Q,l,QQ) | plot(l,C,l,CS,l,P,l,Ai,l,Ao,l,Q,l,QQ) |
Revision as of 13:35, 26 September 2012
Template:Https://2012.igem.org/User:Tabima
Scripting
RALSTONIA DIFFERENTIAL EQUATION SOLUTION
These scripts create the differential equations, find the steady state concetrations and then solve them by a 4th order Runge Kutta:
DIFFERANTIAL EQUATIONS DECLARATIONS
%THIS CODE CREATE ALL THE DIFFERENTIAL EQUATIONS FOR THE SYSTEM FOR %RASTONIA
function y=ecuaDifR(t,v) %---------Parameters------% global alfS %Basal concentration of the sensor phcS global alfRA %Basal concnetration of the comple pchA-pchR global alfR %Basal concentration of LuxR global alfI %Basal concentration of CI global alfCI %Basal concentration of CI global alfHA %Basal concnetration of HipA7 global alfHB %Basal concnetration of HipB global alfAS %Basal concnetration of Salycilic acid global gammaS %Degradation of the sensor pchS global gammaRA %Degradation of the complex pchR-pchA global gammaR %Degradation of LuxR global gammaI %Degradation of LuxI global gammaCI %Degradation of CI global gammaHA %Degradation of HipA7 global gammaHB %Degradation of HipB global gammaAS %Dergradation of Salycilic acid global mOHS %Kinetic constant for the detection of 3-OH-PAME by the sensor pchS (phosphorylation) global mSFR %Kinetic constant for the phosphorylation of the complex pchR-pchA by the sensor global mA %Kinetic constant for the activation of the promoter by the pchA global mIR %Kinetic constant for the formation of the complex LuxILuxR global mI %Constant that represent the union of the complex LuxILuxR with the promoter global mHAHB %Kinetic constant for the inhibition of HipA7 global betaI %Max production of LuxI global betaCI %Max production of CI global betaHB %Max peoduction of HipB global betaHA %Max production of HipA7 global betaAS %Max production of Salicylic acid global kA %Constant k of the hill ecuation for the promoter promoted by pchA global kIR %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR global kCI %Constant k of the hill equation for the promoter promoted by CI global hA %Hill constant for the promoters promoted by pchA global hIR %Hill constant for the promoter promoted by the complex IR global hCI %Hill constant fot the promoter CI global eI %Export factor of LuxI global jI %Import factor of LuxI global deltaI %Difusion of LuxI outside the cell global eAS %Export of Salicylic acid global numcel %number of cells if (t<(10) || ((t)>20)) OH=0; else OH=15; end
%------ Variables%------ S=v(1); %Cocentration of the sensor pchS the cell SF=v(2); %Concentration of phosphorylated sensor the cell RA=v(3); %Concentration of the comple pchR-pchA A=v(4); %Concentratio of the promoter avtivator pchA Ii=v(5); %Concentration of LuxI inside the cell Io=v(6); %Concentration of LuI outsied the cell IR=v(7); %Concentration of the complex LuxI-LuxR R=v(8);%Concentration of the protein CI CI=v(9);%Concentration of HipA7 HB=v(10);%Concnetratio of HipB HA=v(11);%Concentration of salicylic acid AS=v(12); %Concentratio of quitin monomers %---Equations---% dS=alfS- gammaS*S - mOHS*OH*S; %Change of the sensor pchS dSF = mOHS *OH*S - mSFR *SF*RA ; %Change of phosphorylated sensor dRA=alfRA - gammaRA*RA - mSFR*SF*RA;%Change of the comple pchR-pchA dA= mSFR*SF*RA-mA*A; %Change of the activator pchA inside the cell dIi= alfI+ (betaI*(A^hA))/(kA^hA+(A^hA)) -gammaI*Ii +jI*Io- eI*Ii- mIR*Ii*R; %Change of LuxI inside the cell dIo= numcel*(eI*Ii-jI*Io)-deltaI*Io; %Change of LuxI outside the cell dIR= mIR*Ii*R - mI*IR; %Change of the complex LuxI luxR dR= alfR-gammaR*R -mIR*Ii*R +(betaI*(A^hA))/(kA^hA+(A^hA)); %Change of LuxR dCI= alfCI -gammaCI*CI+ (betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI)) +(betaCI*(IR^hIR))/(kIR^hIR+(IR^hIR));%Change of CI dHB=alfHB-gammaHB*HB+(betaHB*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaHB*(IR^hIR))/(kIR^hIR+(IR^hIR))-mHAHB*HA^2*HB^2; %Chanche of HipB dHA=alfHA-gammaHA*HA+ (betaHA*(CI^hCI))/(kCI^hCI+(CI^hCI))-mHAHB*HA^2*HB^2; %Change of HipA7 dAS=alfAS-gammaAS*AS +(betaAS*(CI^hCI))/(kCI^hCI+(CI^hCI))-eAS*AS+(betaAS*(IR^hIR))/(kIR^hIR+(IR^hIR)); %Change of Salicylic acid y1(1)=dS; y1(2)=dSF; y1(3)=dRA; y1(4)=dA; y1(5)=dIi; y1(6)=dIo; y1(7)=dIR; y1(8)=dR; y1(9)=dCI; y1(10)=dHB; y1(11)=dHA; y1(12)=dAS; y=y1'; end
RUNGE KUTTA
%FILE THAT SOLVES THE DIFFERENTIAL EQUATION AND GRAPHS THEM alfS=0.9; %Basal concentration of the sensor pchS alfRA=0.9; %Basal concnetration of the complez pchA-pchR alfR=0.6; %Basal concentration of LuxR alfI=0.4; %Basal concentration of LuxI alfCI=0.5; %Basal concentration of CI alfHA=1; %Basal concnetration of HipA7 alfHB=0.4; %Basal concnetration of HipB alfAS=0.4; %Basal concnetration of Salycilic acid gammaS=1; %Degradation of Chitinase inside the cell gammaRA=1; %Degradation of chitoporin gammaR=1; %Degradation of LuxR gammaI=1; %Degradation of LuxI gammaCI=1; %Degradation of CI gammaHA=1; %Degradation of HipA7 gammaHB=4; %Degradation of HipB gammaAS=1; %Dergradation of Salycilic acid mOHS=4; %Kinetic constant for the formation of the phoshorilation of the sensor mSFR=2.6; %Kinetic constant of the reaction of the phosphorilarion of the comple R mA=3.5; %Kinetic constant for the activation by A mIR=3; %Kinetic constant for the formation of the complex LuxILuxR mI=3; %Constant that represent the union of the complex LuxILuxR with the promoter mHAHB=12; %Kinetic constant for the inhibition of HipA7 betaI=10; %Max production of LuxI betaCI=9.96; %Max production of CI betaHB=9.95; %Max production of HipB betaHA=10; %Max production of HipA7 betaAS=11.2; %Max production of Salicylic acid kA=0.1; %Constant k of the hill ecuation for the promoter promoted by S kIR=0.39; %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR kCI=0.055; %Cosntant k of the hill equation for the promoter promoted by CI hA=1.2; %Hill constant for the promoters promoted by S hIR=3.4; %Hill constant for the promoter promoted by the complex IR hCI=2.3; %Hill constant fot the promoter CI eI=0.5; %Export factor of LuxI jI=0.8; %Import factor of LuxI deltaI=0.2;%Difusion of LuxI outside the cell eAS=0.8; numcel=1; %number of cells %----%
h=100; %Tiempo maximo m=0.01; %Longitud de paso [s] t=0:m:h; %Vector tiempo xi=[1,1,1,1,1,1,1,1,1,1,1,1]; y=fsolve(@CondInR,xi);
conInd=y; l=(0:m:h)'; %Vector de tiempo x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia el tiempo OH=zeros(1,length(l)); x(1,:)=conInd; for k=1:length(l)-1 xk=x(k,:); %Captura de la ultima posicion de la matirz, es decir, los %valores actuales de las variables k1=ecuaDifR(l(k),xk); %Primera pendiente del metodo de RK4 k2=ecuaDifR(l(k)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 k3=ecuaDifR(l(k)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 k4=ecuaDifR(l(k)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables %xk1=xk+m*ecuaDif(l(k),xk)'; %Method of Newton xk2=zeros(1,length(xk1)); for p=1:length(xk1) if(xk1(p)<0.00000001) xk2(p)=0; else xk2(p)=xk1(p); end end x(k+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz end
for j=1:length(l) if (l(j)<(10) || l(j)>(20)) OH(j)=0; else OH(j)=15; end end
S=x(:,1); SF=x(:,2); RA=x(:,3); A=x(:,4); Ii=x(:,5); Io=x(:,6); IR=x(:,7); R=x(:,8); CI=x(:,9); HB=x(:,10); HA=x(:,11); AS=x(:,12);
figure(1) plot(l,S,l,SF) legend('Sensor (pchS)',' Phosporilated pchS') xlabel('Time') ylabel('Concetratio (micromolar)') title('Response of Sensor pchS') figure(5) plot(l,RA,l,A) legend('Complex pchR-pchA','Activator pchA') xlabel('Time') ylabel('Concetration (micromolar)') title('Activator response') figure(2) plot (l,R,l,Ii,l,Io,l,IR) legend('LuxR','LuxI nside the cell','LuxI outside the cell','Complex(Lux-LuxR)') xlabel('Time') ylabel('Concetration (micromolar)') title('LuxI-LuxR system response') figure(3) plot (l,HA,l,HB) legend('Toxin HipA7','Antitoxin HipB') xlabel('Time') ylabel('Concetration (micromolar)') title('Toxin-Antitoxin module') figure(4) plot (l,OH,l,AS,l,CI) legend('3-OH-PAME','Salicylic acid','CI') xlabel('Time') ylabel('Concetration (micromolar)') title('CI and Salicylic Acid response')
RUST DIFFERENTIAL EQUATION SOLUTION
Chitin impulse function: This function returns the chitin concentration depending on the time imput
function answer = functionChi( t ) % answer=0; % if t>10 && t<20 % answer=15; % end % end
Differential equation declaration:
%THIS CODE CREATE ALL THE DIFFERENTIAL EQUATIONS FOR THE SYSTEM % function y=ecuaDif(t,v) %---------Parameters------% global alfA %Basal concentration of Chitinase inside the cell (micromolar) global alfP %Basal concnetration of chitoporin global alfC %Basal concentration of the CBP global alfR %Basal concentration of LuxR global alfI %Basal concentration of CI global alfCI %Basal concentration of CI global alfHA %Basal concnetration of HipA7 global alfHB %Basal concnetration of HipB global alfAS %Basal concnetration of Salycilic acid global alfCS global gammaA %Degradation of Chitinase inside the cell global gammaP %Degradation of chitoporin global gammaC %Degradation concentration of the CBP global gammaR %Degradation of LuxR global gammaI %Degradation of LuxI global gammaCI %Degradation of CI global gammaHA %Degradation of HipA7 global gammaHB %Degradation of HipB global gammaAS %Dergradation of Salycilic acid global gammaCS %Degradation of the complex CS global mCS %Kinetic constant for the formation of the complex CS global mCSQ %Kinetic constant of the reaction of the complex CS with the chitin global mAQQ %Kinetic constant for the reaction of the chitinase and th chitin global mIR %Kinetic constant for the formation of the complex LuxILuxR global mI %Constant that represent the union of the complex LuxILuxR with the promoter global mHAHB %Kinetic constant for the inhibition of HipA7 global betaP %Max production of the chitoporin global betaA %Max production of chitinase global betaI %Max production of LuxI global betaCI %Max production of CI global betaHB %Max peoduction of HipB global betaHA %Max production of HipA7 global betaAS %Max production of Salicylic acid global kS %Constant k of the hill ecuation for the promoter promoted by S global kIR %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR global kCI %Constant k of the hill equation for the promoter promoted by CI global hS %Hill constant for the promoters promoted by S global hIR %Hill constant for the promoter promoted by the complex IR global hCI %Hill constant fot the promoter CI global eA %Export factor of the chitinase global jQ %Import factor of the chitin monomers global deltaA %Difusion factor of the chinitanse outside the cell global eI %Export factor of LuxI global jI %Import factor of LuxI global deltaI %Difusion of LuxI outside the cell global Stotal %Total concentration of the sensor in the cell global eAS %Export of Salicylic acid global numcel %number of cells % % QQ=functionChi(t); % %------ Variables%------ % % C=v(1); %Cocentration of chitinase outside the cell CS=v(2); %Concentration of chitinase inside the cell P=v(3); %Concentration of chitiporin Ai=v(4); %Concentratio of chitin binding protein (CBP) Ao=v(5); %Concentration the complex CBP-s Q=v(6); %Concentration of LuxR Ii=v(7); %Concentration of LuxI inside the cell Io=v(8); %Concentration of LuI outsied the cell IR=v(9); %Concentration of the complex LuxI-LuxR R=v(10);%Concentration of the protein CI CI=v(11);%Concentration of HipA7 HB=v(12);%Concnetratio of HipB HA=v(13);%Concentration of salicylic acid AS=v(14); %Concentratio of quitin monomers % % % %---Equations---% $ % S=Stotal-CS; % % % dC=alfC- gammaC*C - mCS*C*S; %Change of CBP dCS=alfCS+ mCS*C*S- mCSQ*CS*Q-gammaCS*CS; %Change of the complex CS dP=alfP - gammaP*P + (betaP*(S^hS))/(kS^hS+(S^hS));%Change of chitoporin dAi=(alfA- gammaA*Ai+ (betaA*(S^hS))/(kS^hS+(S^hS)))- eA*Ai; %Change of chitinase inside the cell dAo= eA*Ai-deltaA*Ao- mAQQ*Ao*QQ; %Change of chitinase outside the cell dQ= 2*jQ*P*(mAQQ*QQ*Ao)-mCSQ*CS*Q; %Change of chitin monomer inside the cell dIi= alfI+ (betaI*(S^hS))/(kS^hS+(S^hS)) -gammaI*Ii +jI*Io- eI*Ii- mIR*Ii*R; %Change of LuxI inside the cell dIo= numcel*(eI*Ii-jI*Io)-deltaI*Io; %Change of LuxI outside the cell dIR= mIR*Ii*R - mI*IR; %Change of the complex LuxI luxR dR= alfR-gammaR*R -mIR*Ii*R +(betaI*(S^hS))/(kS^hS+(S^hS)); %Change of LuxR dCI= alfCI -gammaCI*CI+ (betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI)) +(betaCI*(IR^hIR))/(kIR^hIR+(IR^hIR));%Change of CI dHB=alfHB-gammaHB*HB+(betaHB*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaHB*(IR^hIR))/(kIR^hIR+(IR^hIR))-mHAHB*HA^2*HB^2; %Chanche of HipB dHA=alfHA-gammaHA*HA-mHAHB*HA^2*HB^2+(betaHA*(CI^hCI))/(kCI^hCI+(CI^hCI)); %Change of HipA7 dAS=alfAS-gammaAS*AS +(betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaAS*(IR^hIR))/(kIR^hIR+(IR^hIR))-eAS*AS; %Change of Salicylic acid % y1(1)=dC; y1(2)=dCS; y1(3)=dP; y1(4)=dAi; y1(5)=dAo; y1(6)=dQ; y1(7)=dIi; y1(8)=dIo; y1(9)=dIR; y1(10)=dR; y1(11)=dCI; y1(12)=dHB; y1(13)=dHA; y1(14)=dAS; % y=y1'; % % end
Diferential equation solution
tic; % %File that solves the differential equations and graphs them % alfA = 0.9; %Basal concentration of Chitinase inside the cell (micromolar) alfP = 0.9; %Basal concnetration of chitoporin alfC = 0.9; %Basal concentration of the CBP alfR = 0.6; %Basal concentration of LuxR alfI = 0.4; %Basal concentration of LuxI alfCI = 0.5; %Basal concentration of CI alfHA = 1.4; %Basal concnetration of HipA7 alfHB = 0.4; %Basal concnetration of HipB alfAS = 0.4; %Basal concnetration of Salycilic acid alfCS=1.4; gammaA=1; %Degradation of Chitinase inside the cell gammaP=1; %Degradation of chitoporin gammaC=1; %Degradation concentration of the CBP gammaR=1; %Degradation of LuxR gammaI=1; %Degradation of LuxI gammaCI=1; %Degradation of CI gammaHA=1; %Degradation of HipA7 gammaHB=4; %Degradation of HipB gammaAS=0.8; %Dergradation of Salycilic acid gammaCS=1; %Degradation of the complex Cs mCS=13; %Kinetic constant for the formation of the complex CS mCSQ=12; %Kinetic constant of the reaction of the complex CS with the chitin mAQQ=0.2; %Kinetic constant for the reaction of the chitinase and th chitin mIR=3; %Kinetic constant for the formation of the complex LuxILuxR mI=3; %Constant that represent the union of the complex LuxILuxR with the promoter mHAHB=12; %Kinetic constant for the inhibition of HipA7 betaP=12; %Max production of the chitoporin betaA=10; %Max production of chitinase betaI=10; %Max production of LuxI betaCI=9.96; %Max production of CI betaHB=9.5; %Max production of HipB betaHA=11; %Max production of HipA7 betaAS=11.2; %Max production of Salicylic acid kS=0.08; %Constant k of the hill ecuation for the promoter promoted by S kIR=0.39; %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR kCI=0.055; %Cosntant k of the hill equation for the promoter promoted by CI hS=1; %Hill constant for the promoters promoted by S hIR=3.4; %Hill constant for the promoter promoted by the complex IR hCI=2.3; %Hill constant fot the promoter CI eA=0.5; %Export factor of the chitinase jQ=0.1; %Import factor of the chitin monomers deltaA=0.2; %Difusion factor of the chinitanse outside the cell eI=0.5; %Export factor of LuxI jI=0.8; %Import factor of LuxI deltaI=0.2;%Difusion of LuxI outside the cell Stotal= 1.5; %Total concentration of the sensor in the cell eAS=0.8; numcel=1; %number of cells % h=100; %Tiempo maximo % m=0.01; %Longitud de paso [s] % t=0:m:h; %Vector tiempo % xi=[1,1,1,1,1,1,1,1,1,1,1,1,1,1]; % y=fsolve(@CondIn,xi); % % conInd=y; % % % l=(0:m:h)'; %Vector de tiempo % x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia la longitud % QQ=zeros(1,length(l)); % x1=conInd; % for k=1:length(l)-1 % xk=x(k,:); %Captura de la ultima posicion de la matirz, es decir, los %valores actuales de las variables k1=ecuaDif(l(k),xk); %Primera pendiente del metodo de RK4 k2=ecuaDif(l(k)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 k3=ecuaDif(l(k)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 k4=ecuaDif(l(k)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables %xk1=xk+m*ecuaDif(l(k),xk)'; %Method of Newton xk2=zeros(1,length(xk1)); for p=1:length(xk1) if(xk1(p)<0.00000001) xk2(p)=0; else xk2(p)=xk1(p); end end x(k+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz end % % % for j=1:length(l) % QQ(1,j)=functionChi(l(j)); % end % % C=x(:,1); CS=x(:,2); P=x(:,3); Ai=x(:,4); Ao=x(:,5); Q=x(:,6); Ii=x(:,7); Io=x(:,8); IR=x(:,9); R=x(:,10); CI=x(:,11); HB=x(:,12); HA=x(:,13); AS=x(:,14);
% figure(1) plot(l,C,l,CS,l,P,l,Ai,l,Ao,l,Q,l,QQ) legend('CBP','Complex Sensor(CBP)','Chitoporin','Chitinase inside the cell','Chitinase outside the cell','Chitin monomers','Chitin') xlabel('Time') ylabel('Concentration') title('Detection system substances') % figure(2) plot (l,R,l,Ii,l,Io,l,IR) legend('LuxR','LuxI Inside the cell','LuxI outside the cell','Complex LuxI-LuxR') xlabel('Time') ylabel('Concentration') title('LuxI-LuxR system substances') % figure(3) plot (l,HA,l,HB) legend('HipA7','HipB') xlabel('Time') ylabel('Concentration') title('Toxin-Antitoxin module substances') % figure(4) plot (l,QQ,l,AS,l ,CI) legend('QQ','Salicylic acid','CI') xlabel('Time') ylabel('Concentration') title('CI and Salicylic acid response') %