Team:Evry/AIDSystem
From 2012.igem.org
m |
Chr.karine (Talk | contribs) |
||
Line 26: | Line 26: | ||
<h2>Auxin reception devices</h2> | <h2>Auxin reception devices</h2> | ||
+ | <p>Our reception system is based on the auxin-degron system established by K. Nishimura and all. (2009). This system allows a rapid depletion of protein in nonplant cells.</p> | ||
<p>We designed two auxin production devices in embryos. To visualize the communication between different tissues or between <i>E. coli</i> and a tissue of the embryo, we chose to work with GFP. Our orthogonal hormonal system <b>works with any proteins fused to AID signal</b> with any transcription factors.</p> | <p>We designed two auxin production devices in embryos. To visualize the communication between different tissues or between <i>E. coli</i> and a tissue of the embryo, we chose to work with GFP. Our orthogonal hormonal system <b>works with any proteins fused to AID signal</b> with any transcription factors.</p> | ||
<ul> | <ul> | ||
Line 33: | Line 34: | ||
<img src="https://static.igem.org/mediawiki/2012/f/f2/ReceptionCompress.jpg" width="930px" alt="devices for reception" /> | <img src="https://static.igem.org/mediawiki/2012/f/f2/ReceptionCompress.jpg" width="930px" alt="devices for reception" /> | ||
- | + | <h3>Auxin degron system</h3> | |
Revision as of 13:10, 26 September 2012
Intertissue communication: An orthogonal hormonal system
We adapted the auxin production device from the iGEM team Imperial college 2011 to eukaryotes and combined it with an auxin detection module. This way, we created the first synthetic hormonal system for inter-tissues communication.
To test this system, we co-injected plasmids expressing our production and reception devices in embryos, a new chassis we wanted to implement for synthetic biology. We performed auxin toxicity and uptake tests at the begining of our project to ensure the feasability.
Auxin production devices
We designed three auxin production devices in embryos. The devices 1 and 2 were designed to be expressed in embryos, while device 3 was designed to be expressed in E. coli. In this last case, the aim is that the tadpoles eat bacteria expressing device 3.
- Auxin production device 1 : this device is composed of BBa_K812021, coding for IaaM, and BBa_K812120, coding for IaaH for auxin generator for the use in embryos.
- Auxin production device 2 : this device is composed of BBa_K812014. It is meant for the co-expression of IaaH and IaaM genes in the same cells in embryos.
- Auxin production device 3 : this device is composed of BBa_K515100, coding for IaaM and IaaH for auxin generator in E.coli.
Pathway
Auxin reception devices
Our reception system is based on the auxin-degron system established by K. Nishimura and all. (2009). This system allows a rapid depletion of protein in nonplant cells.
We designed two auxin production devices in embryos. To visualize the communication between different tissues or between E. coli and a tissue of the embryo, we chose to work with GFP. Our orthogonal hormonal system works with any proteins fused to AID signal with any transcription factors.
- Auxin reception device 1 : this device is composed of BBa_K812010 coding for GFP-AID, and BBa_K812012 coding for OsTir1.
- Auxin reception device 2 : this device is composed of BBa_K812013 coding for GFP-AID and OsTir1 in the same cell.
Auxin degron system
References:
- 1. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature methods 6, 917-22 (2009).