Team:Peking/Project/3D
From 2012.igem.org
Line 14: | Line 14: | ||
Optogenetics has a vital advantage that causes it to have a more imperative spot compared with conventional synthetic biology which based on chemicals in the future of science. Based on light, the information transmits with a high resolution on the spatiotemporal scale, which make detailed work possible.<br /><br /> | Optogenetics has a vital advantage that causes it to have a more imperative spot compared with conventional synthetic biology which based on chemicals in the future of science. Based on light, the information transmits with a high resolution on the spatiotemporal scale, which make detailed work possible.<br /><br /> | ||
- | Previously, due to the low sensitivity of biosensor,the main light source for optogenetics in prior studies was the laser, which came with the danger of causing cell damage due to the high energy waves. With a high resolution as well as high sensitivity, our luminesensor is a valuable compensation for optogenetics, which may make optogenetics in synthetic biology application no longer a dream.<br /><br /> | + | Previously, due to the low sensitivity of biosensor,the main light source for optogenetics in prior studies was the laser, which came with the danger of causing cell damage due to the high energy waves. With a high resolution as well as high sensitivity, our <i>luminesensor</i> is a valuable compensation for optogenetics, which may make optogenetics in synthetic biology application no longer a dream.<br /><br /> |
- | + | Bio-printing is a method that guides a group of cells to response to signals in a highly organised way, which may lay a profound foundation in medical and industrial application (e.g. artificial organ and bio-materials). Detailed printing with living cells requires high spatial resolution,which is difficult to realize with chemicals due to diffusion. <br /><br /> | |
However, with our luminesensor, we managed in printing with high resolution in 2D and even 3D with the luminance in the moon-light scale, we even managed in detailed printing with the luminance of an iPad, which suggests that it is not only the first artificially designed sensor that responds to the natural light, but also could also act as interface between common electrical devices and biological systems. | However, with our luminesensor, we managed in printing with high resolution in 2D and even 3D with the luminance in the moon-light scale, we even managed in detailed printing with the luminance of an iPad, which suggests that it is not only the first artificially designed sensor that responds to the natural light, but also could also act as interface between common electrical devices and biological systems. |
Revision as of 09:37, 26 September 2012
Introduction
Optogenetics has a vital advantage that causes it to have a more imperative spot compared with conventional synthetic biology which based on chemicals in the future of science. Based on light, the information transmits with a high resolution on the spatiotemporal scale, which make detailed work possible.
Previously, due to the low sensitivity of biosensor,the main light source for optogenetics in prior studies was the laser, which came with the danger of causing cell damage due to the high energy waves. With a high resolution as well as high sensitivity, our luminesensor is a valuable compensation for optogenetics, which may make optogenetics in synthetic biology application no longer a dream.
Bio-printing is a method that guides a group of cells to response to signals in a highly organised way, which may lay a profound foundation in medical and industrial application (e.g. artificial organ and bio-materials). Detailed printing with living cells requires high spatial resolution,which is difficult to realize with chemicals due to diffusion.
However, with our luminesensor, we managed in printing with high resolution in 2D and even 3D with the luminance in the moon-light scale, we even managed in detailed printing with the luminance of an iPad, which suggests that it is not only the first artificially designed sensor that responds to the natural light, but also could also act as interface between common electrical devices and biological systems.
Fig 1. Printing result – the right image shows that the bacteria did not die or flee, but instead they evenly distributed across the plate.