Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 40: Line 40:
<h2 id="estimation-of-the-variables">Estimation of the variables</h2>
<h2 id="estimation-of-the-variables">Estimation of the variables</h2>
<p>In order to simulate our design, we defined the initial condition of our system, which consists in estimating the following variables:</p>
<p>In order to simulate our design, we defined the initial condition of our system, which consists in estimating the following variables:</p>
 +
<p>
<ul>
<ul>
-
<li><p><span class="math">[<em>P</em>]<sub>0</sub></span> - initial concentration of the Plug&Play plasmids inside the bacteria.</p></li>
+
<li><span class="math">[<em>P</em>]<sub>0</sub></span> - initial concentration of the Plug&Play plasmids inside the bacteria.</li>
-
<li><p><span class="math">[<em>M</em>]<sub>0</sub></span> - initial concentration of recombinase monomers.</p></li>
+
<li><span class="math">[<em>M</em>]<sub>0</sub></span> - initial concentration of recombinase monomers.</li>
-
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside the bacteria</p></li>
+
<li><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside the bacteria</li>
</ul>
</ul>
 +
</p>
<p>To estimate the concentration of the variables, we need the volume of <em>''E. coli''</em>. According to [2]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0.7*10<sup>−15</sup><em>L</em></span><br /> Using this estimate, it is possible to calculate the concentration of one molecule inside the bacteria in molar concentration <br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6*10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br /></p>
<p>To estimate the concentration of the variables, we need the volume of <em>''E. coli''</em>. According to [2]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0.7*10<sup>−15</sup><em>L</em></span><br /> Using this estimate, it is possible to calculate the concentration of one molecule inside the bacteria in molar concentration <br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6*10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br /></p>
<p><br /><span class="math">$[1 molec] = \frac{1}{0.7*10^{-15} L} = \frac{1}{6*10^{23}  
<p><br /><span class="math">$[1 molec] = \frac{1}{0.7*10^{-15} L} = \frac{1}{6*10^{23}  
Line 52: Line 54:
<p>According to [3] it is expected approximately 100-300 plasmid inside the bacteria (high copy) and approximately 10 plasmids (low copy). So, using the equation we have:  
<p>According to [3] it is expected approximately 100-300 plasmid inside the bacteria (high copy) and approximately 10 plasmids (low copy). So, using the equation we have:  
</p>
</p>
 +
<p>
<ul>
<ul>
-
<li><p><span class="math">$[P]_0 \simeq 10 nM$</span> - high copy plasmid.</p></li>
+
<li><span class="math">$[P]_0 \simeq 10 nM$</span> - high copy plasmid.</li>
-
<li><p><span class="math">$[P]_0 \simeq 100 nM$</span> - low copy plasmid.</p></li>
+
<li><span class="math">$[P]_0 \simeq 100 nM$</span> - low copy plasmid.</li>
</ul>
</ul>
 +
</p>
<p>
<p>
Line 71: Line 75:
The values of these constants, obtained in [2] and [3], are presented below:
The values of these constants, obtained in [2] and [3], are presented below:
</p>
</p>
 +
<p>
<ul>
<ul>
-
<li><p><span class="math">$k_{degRNA} = 1/350$</span> (1/sec).</p></li>
+
<li><span class="math">$k_{degRNA} = 1/350$</span> (1/sec).</li>
-
<li><p><span class="math">$k_{transc} = 40$</span> (bp/sec)  for T7 promoter.</p></li>
+
<li><span class="math">$k_{transc} = 40$</span> (bp/sec)  for T7 promoter.</li>
-
<li><p><span class="math">$k_{transl} = 15$</span> (aa/sec).</p></li>
+
<li><span class="math">$k_{transl} = 15$</span> (aa/sec).</li>
-
<li><p><span class="math">$k_{degProt} = 0.0167/60$</span> (Prot/sec) Average protein degradation.</p></li>
+
<li><span class="math">$k_{degProt} = 0.0167/60$</span> (Prot/sec) Average protein degradation.</li>
-
<li><p><span class="math">$n_{bp} = 1032$</span> for CRE.</p></li>
+
<li><span class="math">$n_{bp} = 1032 (base pair)$</span> for CRE.</li>
-
<li><p><span class="math">$n_{aa} = n_{bp}/3 = 344$</span> for CRE.</p></li>
+
<li><span class="math">$n_{aa} = n_{bp}/3 = 344(aa) $</span> for CRE.</li>
-
<li><p><span class="math">$n_{bp} = 1119$</span> for FLP.</p></li>
+
<li><span class="math">$n_{bp} = 1119 (base pair)$</span> for FLP.</li>
-
<li><p><span class="math">$n_{aa} = n_{bp}/3 = 373$</span> for FLP.</p></li>
+
<li><span class="math">$n_{aa} = n_{bp}/3 = 373 (aa) $</span> for FLP.</li>
</ul>
</ul>
 +
</p>
<p>
<p>
Line 181: Line 187:
<p>[4] Zuwen Zhang and Beat Lutz. <em>Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein.</em> Nucl. Acids Res. (2002) 30 (17): e90.</p>
<p>[4] Zuwen Zhang and Beat Lutz. <em>Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein.</em> Nucl. Acids Res. (2002) 30 (17): e90.</p>
 +
<!--
{{:Team:USP-UNESP-Brazil/Templates/Foot}}
{{:Team:USP-UNESP-Brazil/Templates/Foot}}
 +
-->

Revision as of 01:42, 26 September 2012