Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 26: Line 26:
<p>Our experimental design consists in a circularization of the ORF and its insertion in the plug and play plasmid. The circularization and insertion process are illustrated in figure 1 and 2, respectively. The equations of our model are presented in the appendix.</p>
<p>Our experimental design consists in a circularization of the ORF and its insertion in the plug and play plasmid. The circularization and insertion process are illustrated in figure 1 and 2, respectively. The equations of our model are presented in the appendix.</p>
-
{{:Team:USP-UNESP-Brazil/Templates/RImage | image=ORFinsertion.png | caption=Table 1. Association and dissociation rate constants for FLP and Cre binding to DNA, obtained by [1]. | size=600px }}
+
{{:Team:USP-UNESP-Brazil/Templates/RImage | image=ORFinsertion.png | caption=Fig. 2. ORF insertion in the plug and play plasmid. | size=600px }}
Line 36: Line 36:
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
</ul>
</ul>
-
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to [2]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0.7*10<sup>−15</sup><em>L</em></span><br />. Using this, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration <br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6*10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br /></p>
+
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to [2]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0.7*10<sup>−15</sup><em>L</em></span><br /> Using this estimative, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration <br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6*10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br /></p>
<p><br /><span class="math">$[1 molec] = \frac{1}{0.7*10^{-15} L} = \frac{1}{6*10^{23}  
<p><br /><span class="math">$[1 molec] = \frac{1}{0.7*10^{-15} L} = \frac{1}{6*10^{23}  
0.7*10^{-15}}M \simeq 10^{-9} M = 1 nM$</span><br /></p>
0.7*10^{-15}}M \simeq 10^{-9} M = 1 nM$</span><br /></p>
Line 50: Line 50:
<h3 id="estimating-recombinase-concentration.">Estimating Recombinase Concentration.</h3>
<h3 id="estimating-recombinase-concentration.">Estimating Recombinase Concentration.</h3>
-
<p>To estimate the concentration of recombinase we used a simple model:
+
To estimate the concentration of recombinase we used a simple model:
</p>
</p>
<p><br /><span class="math">$\frac{d}{dt}[mRNA] = \frac{k_{tran}}{V n_{bp}} - k_{dRNA} [mRNA]$</span><br />
<p><br /><span class="math">$\frac{d}{dt}[mRNA] = \frac{k_{tran}}{V n_{bp}} - k_{dRNA} [mRNA]$</span><br />

Revision as of 17:11, 24 September 2012