Team:Tsinghua-D/Project.html

From 2012.igem.org

(Difference between revisions)
Line 22: Line 22:
}
}
.STYLE1 {
.STYLE1 {
-
font-size: 24px;
+
font-size: 21px;
font-weight: bold;
font-weight: bold;
}
}
.STYLE3 {font-family: Verdana, Arial, Helvetica, sans-serif; font-weight: bold; }
.STYLE3 {font-family: Verdana, Arial, Helvetica, sans-serif; font-weight: bold; }
 +
.STYLE4 {font-size: 14px}
</style>
</style>
</head>
</head>
Line 35: Line 36:
<table width="965" border="0" align="left">
<table width="965" border="0" align="left">
   <tr>
   <tr>
-
     <td class="main"><p align="center" class="STYLE1">A Computer-aided  Temperature-response Regulatory RNA Design</p>
+
     <td class="main"><blockquote>
-
      <p align="center"><strong>CHEN Huaiqing1,  CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI  Tianyi1, LI Zhangqinang1, PENG Liying2, SUN  Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE  Hengyi1, YANG Tianfang2, SHI Binbin2,</strong><strong>※</strong><strong> and DING Hongxu2,</strong><strong>※ </strong></p>
+
      <blockquote>
 +
        <p align="center" class="STYLE1">A Computer-aided  Temperature-response Regulatory RNA Design</p>
 +
        <blockquote>
 +
          <blockquote>
 +
            <blockquote>
 +
              <blockquote>
 +
                <p align="center"><span class="STYLE4"><strong>CHEN Huaiqing1,  CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI  Tianyi1, LI Zhangqinang1, PENG Liying2, SUN  Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE  Hengyi1, YANG Tianfang2, SHI Binbin2,</strong><strong>※ and DING Hongxu2,</strong><strong>※ </strong></span></p>
 +
              </blockquote>
 +
            </blockquote>
 +
          </blockquote>
 +
        </blockquote>
 +
      </blockquote>
 +
    </blockquote>
       <ul>
       <ul>
-
         <li><strong>School of life science, Tsinghua  University</strong></li>
+
         <li>
-
         <li><strong>iGEM Tsinghua-D team, Tsinghua  University</strong></li>
+
          <div align="center">
-
      </ul>
+
            <blockquote>
-
      <p><strong>※</strong><strong>. To whom correspondence should be  addressed, SH</strong><strong>I Binbin, </strong><a href="mailto:ltbyshi@gmail.com"><strong>ltbyshi@gmail.com</strong></a><strong>; DING Hongxu, </strong><a href="mailto:poulainding@163.com"><strong>poulainding@163.com</strong></a><strong>.</strong></p>
+
              <blockquote> <strong>School of life science, Tsinghua  University</strong></blockquote>
-
      <p><strong>Abstract</strong><strong>  </strong>The first software that can design temperature-sensing regulatory RNA –  RNAThermo is presented in this article.   Parameters were set and several temperature-sensing regulatory RNA  sequences were given by the RNAThermo.  The  designed RNAs are verified both on the structural and functional aspects.  At the end of the article, RNAThermo’s  potential application in fermentation industry is discussed.<strong> </strong></p>
+
            </blockquote>
-
      <p><em>Keywords:</em> RNA Thermometer, computer, design</p>
+
          </div>
-
      <p><strong>Introduction</strong></p>
+
        </li>
-
      <p>Besides  exploration, explanation and prediction, the ultimate goal of science is  creation.  In the field of life science,  enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial  biological networks had been made.  However,  no nodes within these networks are artificially made thus such networks cannot  be recognized as ‘created’.            Recently, the creation of nodes inside  biological networks emerges as a hotspot.   Because of its structural simplicity and manipulation convenience, RNATs  become an ideal model for conducting such researches.</p>
+
         <li>
-
      <p><strong>RNA Thermometer (RNAT)</strong></p>
+
          <div align="center">
-
      <p align="left">Resides  in the 5’ untranslated region (5’UTR) of the whole mRNA, RNA thermometer (RNAT)  is a kind of temperature-sensing sequence.   As the environmental temperature changes, the RNAT can fold into a  series of different secondary structure.   Some of the structures can block ribosomes’ access to the mRNA thus  hinder translation (referred to as unmelted structure).  Other structures can cause ribosomes’ binding  to the mRNA and the initiation of translation (referred to as melted structure).  By shifting from the two kinds of structures,  the RNAT regulate gene expression in the level of translation <strong>(1)</strong>.  </p>
+
            <blockquote>
-
      <p><strong>The software RNAThermo can design RNATs that meet the  given parameters</strong></p>
+
              <blockquote> <strong>iGEM Tsinghua-D team, Tsinghua  University</strong></blockquote>
-
      <p align="left">Based  on biological and physical principle, adapting computer algorithms, RNAThermo designs  RNATs that meet the given parameters.  What  the user should tell the software are the regulation temperature, the structure  (both unmelted structure and melted structure) of the RNAT and the SD sequence position  of the RNAT.  RNAThermo gives the  sequences of RNATs that fulfill these requirements.  </p>
+
            </blockquote>
-
      <p><strong>The design of RNATs based on biological principle</strong></p>
+
          </div>
-
      <p align="left">The  principle behind the RNATs’ response to temperature is simple: At low temperatures,  sequence that binds to ribosome will be trapped in a hairpin structure.  Increasing temperature destabilizes the  structure such that the trapped sequence becomes accessible, allowing  translation to be initiated.  The  following <strong>(Figure 1)</strong> is the  schematic diagram <strong>(2)</strong>:</p>
+
          <blockquote>
-
      <p align="center"><img src="https://static.igem.org/mediawiki/2012/7/73/Project-figure1.png" width="273" height="327"></p>
+
            <p><strong>※</strong><strong>. To whom correspondence should be  addressed, SH</strong><strong>I Binbin, </strong><a href="mailto:ltbyshi@gmail.com"><strong>ltbyshi@gmail.com</strong></a><strong>; DING Hongxu, </strong><a href="mailto:poulainding@163.com"><strong>poulainding@163.com</strong></a><strong>.</strong></p>
-
      <p align="center"><strong>Figure 1.  </strong>Structural change of RNAT’s according to the environmental  temperature.  The SD stands for  Shine-Dalgarno sequence, which is recognized and bind by ribosome to initiate translation.  The AUG stands for start codon, from where  the translation begins.</p>
+
            <p>&nbsp;</p>
-
      <p>One example for this mechanism is  the regulation of <em>E.Coli’</em>s <em>rpoH</em> gene <strong>(Figure 2)</strong>.  Responded to  environmental temperature change, <em>rpoH</em> gene regulates the expression of the heat shock protein.  Low temperatures (30 °C) induces a bend in the  ribosome-binding site (RBS)-associated downstream box (DB) region, thereby  interfering with ribosome binding.  High  temperature (42 °C) disrupt the bend and initiate the process of translation <strong>(3)</strong>.</p>
+
            <p><strong>Abstract</strong><strong>  </strong>The first software that can design temperature-sensing regulatory RNA –  RNAThermo is presented in this article.   Parameters were set and several temperature-sensing regulatory RNA  sequences were given by the RNAThermo.  The  designed RNAs are verified both on the structural and functional aspects.  At the end of the article, RNAThermo’s  potential application in fermentation industry is discussed.<strong> </strong></p>
-
      <p align="center"><img src="https://static.igem.org/mediawiki/2012/0/05/Project-figure2.png" width="448" height="662"> </p>
+
            <p><em><strong>Keywords</strong>:</em> RNA Thermometer, computer, design</p>
-
      <p align="center"><strong>Figure 2.</strong>  <strong>a. </strong>Formation of stem III in  the <em>rpoH</em> transcript at low  temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated  downstream box (DB) region, thereby interfering with ribosome binding.  <strong>b. </strong>A  rise in temperature to 42 °C opens stem III and stem I of the <em>rpoH</em> mRNA, liberates the AUG start codon  and DB region, facilitates ribosome binding.</p>
+
            <p>&nbsp;</p>
-
      <p align="left">Inspired  by such mechanism, our group designed a series of RNATs whose SD sequence will have  trap-release structural change according to the environmental temperature.  The following is the schematic diagram of the  RNATs we designed <strong>(Figure 3)</strong>:</p>
+
            <p><strong>Introduction</strong></p>
-
      <p align="center"><img src="https://static.igem.org/mediawiki/2012/c/c3/Project-figure3.png" width="99" height="306"></p>
+
            <p>Besides  exploration, explanation and prediction, the ultimate goal of science is  creation.  In the field of life science,  enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial  biological networks had been made.  However,  no nodes within these networks are artificially made thus such networks cannot  be recognized as ‘created’.            Recently, the creation of nodes inside  biological networks emerges as a hotspot.   Because of its structural simplicity and manipulation convenience, RNATs  become an ideal model for conducting such researches.</p>
-
      <p align="center"><strong>Figure 3.  </strong>Schematic diagram of the RNATs we designed.  The red box indicates the SD sequence.</p>
+
            <p>&nbsp;</p>
-
      <p><strong>The design of RNATs based on physical principle</strong></p>
+
            <p><strong>RNA Thermometer (RNAT)</strong></p>
-
      <p align="left">To  give RNAT sequences that meet the given parameters, the central problem is to  predict RNATs’ secondary structure at a given temperature.  Two methods are adapted according to the  computer algorithm’s requirement (More details will be articulated in <strong>‘The design of RNATs adapting computer  algorithms’</strong>).  </p>
+
            <p align="left">Resides  in the 5’ untranslated region (5’UTR) of the whole mRNA, RNA thermometer (RNAT)  is a kind of temperature-sensing sequence.   As the environmental temperature changes, the RNAT can fold into a  series of different secondary structure.   Some of the structures can block ribosomes’ access to the mRNA thus  hinder translation (referred to as unmelted structure).  Other structures can cause ribosomes’ binding  to the mRNA and the initiation of translation (referred to as melted structure).  By shifting from the two kinds of structures,  the RNAT regulate gene expression in the level of translation <strong>(1)</strong>.  </p>
-
      <p align="left">One  principle adapted in predicting RNA secondary structure is free energy  minimization <strong>(4)</strong>.   Secondary structure with the least free energy is considered to be the  optimal solution <strong>(5)</strong>.</p>
+
            <p align="left">&nbsp;</p>
-
      <p align="left">Another  principle adapted here is partition function method <strong>(6)</strong>.  Rather than give one definite structure as  the free energy minimization method, partition function tells the probability  of each secondary structure’s appearance.   In the following equation, Q stands for partition function and P (structure)  stands for the probability of one specific structure’s appearance.</p>
+
            <p><strong>The software RNAThermo can design RNATs that meet the  given parameters</strong></p>
-
      <p align="center"> </p>
+
            <p align="left">Based  on biological and physical principle, adapting computer algorithms, RNAThermo designs  RNATs that meet the given parameters.  What  the user should tell the software are the regulation temperature, the structure  (both unmelted structure and melted structure) of the RNAT and the SD sequence position  of the RNAT.  RNAThermo gives the  sequences of RNATs that fulfill these requirements.  </p>
-
      <p class="STYLE3">The design of RNATs adapting computer algorithms</p>
+
            <p align="left">&nbsp;</p>
-
      <p>This part is included in another page of our wiki. </p>
+
            <p><strong>The design of RNATs based on biological principle</strong></p>
-
      <p>&nbsp;</p>
+
            <p align="left">The  principle behind the RNATs’ response to temperature is simple: At low temperatures,  sequence that binds to ribosome will be trapped in a hairpin structure.  Increasing temperature destabilizes the  structure such that the trapped sequence becomes accessible, allowing  translation to be initiated.  The  following <strong>(Figure 1)</strong> is the  schematic diagram <strong>(2)</strong>:</p>
-
      <p><strong>Verification of the designed RNATs’ secondary  structure</strong></p>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/7/73/Project-figure1.png" width="273" height="327"></p>
-
      <p align="left">The  first step in verification the <em>in silico </em>design is testifying the designed  structure <em>in vitro</em>.  In-line  probing method is adapted to measure the RNATs’ structure <strong>(10)</strong>.  The  results are as shown in <strong>Figure 5</strong>.</p>
+
            <p align="center"><strong>Figure 1.  </strong>Structural change of RNAT’s according to the environmental  temperature.  The SD stands for  Shine-Dalgarno sequence, which is recognized and bind by ribosome to initiate translation.  The AUG stands for start codon, from where  the translation begins.</p>
-
      <p align="center">&nbsp;</p>
+
            <p>One example for this mechanism is  the regulation of <em>E.Coli’</em>s <em>rpoH</em> gene <strong>(Figure 2)</strong>.  Responded to  environmental temperature change, <em>rpoH</em> gene regulates the expression of the heat shock protein.  Low temperatures (30 °C) induces a bend in the  ribosome-binding site (RBS)-associated downstream box (DB) region, thereby  interfering with ribosome binding.  High  temperature (42 °C) disrupt the bend and initiate the process of translation <strong>(3)</strong>.</p>
-
      <p align="center"><strong>Figure 5</strong></p>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/0/05/Project-figure2.png" width="448" height="662"> </p>
-
      <p align="left"><strong>Verification of the designed  RNATs’ temperature-sensing regulatory function</strong></p>
+
            <p align="center"><strong>Figure 2.</strong>  <strong>a. </strong>Formation of stem III in  the <em>rpoH</em> transcript at low  temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated  downstream box (DB) region, thereby interfering with ribosome binding.  <strong>b. </strong>A  rise in temperature to 42 °C opens stem III and stem I of the <em>rpoH</em> mRNA, liberates the AUG start codon  and DB region, facilitates ribosome binding.</p>
-
      <p align="left">Then,  rectification of the temperature-response regulatory function <em>in vivo</em> should be taken in verification of the <em>in silico </em>design.  GFP is adapted as reporter gene in measuring  the RNATs’ temperature-response regulatory function.  The results are shown in <strong>Figure 6</strong>.</p>
+
            <p align="left">Inspired  by such mechanism, our group designed a series of RNATs whose SD sequence will have  trap-release structural change according to the environmental temperature.  The following is the schematic diagram of the  RNATs we designed <strong>(Figure 3)</strong>:</p>
-
      <p align="center"><img src="https://static.igem.org/mediawiki/2012/6/6d/Project-figure6.png" width="486" height="48"> </p>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/c/c3/Project-figure3.png" width="99" height="306"></p>
-
      <p align="center"><strong>Figure 6</strong></p>
+
            <p align="center"><strong>Figure 3.  </strong>Schematic diagram of the RNATs we designed.  The red box indicates the SD sequence.</p>
-
      <p align="left"><strong>Potential Application in  Fermentation Industry</strong></p>
+
            <p>&nbsp;</p>
-
      <p align="left">Computer  aided RNAT design provides a new method for achieving controlled expression of  products in fermentation industry.  Engineered  microorganisms sense a temperature signal and initiate the regulation.  The results are shown in <strong>Figure 7</strong>.</p>
+
            <p><strong>The design of RNATs based on physical principle</strong></p>
-
      <p align="center"> <strong> </strong><img src="https://static.igem.org/mediawiki/2012/2/25/Project-figure7.png" width="657" height="121"><br>
+
            <p align="left">To  give RNAT sequences that meet the given parameters, the central problem is to  predict RNATs’ secondary structure at a given temperature.  Two methods are adapted according to the  computer algorithm’s requirement (More details will be articulated in <strong>‘The design of RNATs adapting computer  algorithms’</strong>).  </p>
-
          <strong>Figure 7</strong></p>
+
            <p align="left">One  principle adapted in predicting RNA secondary structure is free energy  minimization <strong>(4)</strong>.   Secondary structure with the least free energy is considered to be the  optimal solution <strong>(5)</strong>.</p>
-
      <p align="left"><strong>Reference</strong><br>
+
            <p align="left">Another  principle adapted here is partition function method <strong>(6)</strong>.  Rather than give one definite structure as  the free energy minimization method, partition function tells the probability  of each secondary structure’s appearance.   In the following equation, Q stands for partition function and P (structure)  stands for the probability of one specific structure’s appearance.</p>
-
          <strong>(1). </strong>Jens Kortmann and Franz Narberhaus.  Bacterial RNA thermometers: molecular zippers  and switches.  <em>NATURE REVIEWS MICROBIOLOGY</em>, VOLUME 10, 265, APRIL 2012 <br>
+
            <p align="center">&nbsp; </p>
-
          <strong>(2). </strong>Birgit Klinkert and Franz  Narberhaus.  Microbial thermosensors.  <em>Cell.  Mol. Life Sci.</em>  (2009) 66:2661–2676<br>
+
            <p class="STYLE3">The design of RNATs adapting computer algorithms</p>
-
          <strong>(3).</strong> Miyo Terao Morita, Yoshiyuki  Tanaka, Takashi S. Kodama, Yoshimasa Kyogoku,<br>
+
            <p>This part is included in another page of our wiki. </p>
-
        Hideki Yanagi and Takashi Yura.  Translational induction of heat shock transcription  factor sigma32: evidence for a built-in RNA thermosensor..  <em>Genes Dev. </em>1999 13: 655-665 <br>
+
            <p>&nbsp;</p>
-
  <strong>(4). </strong>David H. Mathews.  Revolutions in RNA Secondary Structure  Prediction.  <em>J. Mol. Biol.</em> (2006) 359, 526–532<br>
+
            <p><strong>Verification of the designed RNATs’ secondary  structure</strong></p>
-
  <strong>(5).</strong> David H Mathews and Douglas H  Turner.  Prediction of RNA secondary  structure by free energy minimization.  <em>Current Opinion in Structural Biology</em> 2006, 16:270–278<br>
+
            <p align="left">The  first step in verification the <em>in silico </em>design is testifying the designed  structure <em>in vitro</em>.  In-line  probing method is adapted to measure the RNATs’ structure <strong>(10)</strong>.  The  results are as shown in <strong>Figure 5</strong>.</p>
-
  <strong>(6).</strong> J. S. McCASKlLL.  The Equilibrium Partition Function and Base  Pair Binding Probabilities for RNA Secondary Structure.  <em>Biopolymers</em>,  Vol. 29,1105-1119 (1990)<br>
+
            <p align="center">&nbsp;</p>
-
  <strong>(7). </strong><a href="http://www.tbi.univie.ac.at/~ivo/RNA/">http://www.tbi.univie.ac.at/~ivo/RNA/</a> <br>
+
            <p align="center"><strong>Figure 5</strong></p>
-
  <strong>(8).</strong> <a href="http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html">http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html</a> <br>
+
            <p align="left">&nbsp;</p>
-
  <strong>(9).</strong> L.  Hofacker, W. Fontan.  Fast folding and  comparison of RNA secondary structures. <em>Monatshefte  fur Chemie </em>, 125, 167-188.<br>
+
            <p align="left"><strong>Verification of the designed  RNATs’ temperature-sensing regulatory function</strong></p>
-
  <strong>(10).</strong> In-Line Probing Analysis of  Riboswitches.Elizabeth E.  Regulski and  Ronald R. Breaker.  <em>NATURE PROTOCOL  EXCHANGE </em><a href="http://www.nature.com/protocolexchange/protocols/1889">http://www.nature.com/protocolexchange/protocols/1889</a> </p>
+
            <p align="left">Then,  rectification of the temperature-response regulatory function <em>in vivo</em> should be taken in verification of the <em>in silico </em>design.  GFP is adapted as reporter gene in measuring  the RNATs’ temperature-response regulatory function.  The results are shown in <strong>Figure 6</strong>.</p>
-
      <p align="left"><strong>Acknowledgement</strong></p>
+
            <p align="center"><img src="https://static.igem.org/mediawiki/2012/6/6d/Project-figure6.png" width="486" height="48"> </p>
-
      <p align="left">Thank  Prof. CHEN Guoqiang, Prof. SUN Zhirong and Prof. DAI Junbiao for devoting  guidance in the project.  Thank Prof. Tom  Kelie for his careful revision of the PPT and the report.  Thanks Dr. YIN Ping and Dr. QU Peng for his  kind help in the RNA experiments.  Thanks  FU Xiaozhi and LI Teng for their generous help in the molecular biology  experiment.</p>
+
            <p align="center"><strong>Figure 6</strong></p>
-
      <p align="left"><strong>Supporting online materials</strong></p>
+
            <p align="left">&nbsp;</p>
-
       </td>
+
            <p align="left"><strong>Potential Application in  Fermentation Industry</strong></p>
 +
            <p align="left">Computer  aided RNAT design provides a new method for achieving controlled expression of  products in fermentation industry.  Engineered  microorganisms sense a temperature signal and initiate the regulation.  The results are shown in <strong>Figure 7</strong>.</p>
 +
            <p align="center"> <strong> </strong><img src="https://static.igem.org/mediawiki/2012/2/25/Project-figure7.png" width="657" height="121"><br>
 +
              <strong>Figure 7</strong></p>
 +
            <p align="left">&nbsp;</p>
 +
            <p align="left"><strong>Reference</strong><br>
 +
              <strong>(1). </strong>Jens Kortmann and Franz Narberhaus.  Bacterial RNA thermometers: molecular zippers  and switches.  <em>NATURE REVIEWS MICROBIOLOGY</em>, VOLUME 10, 265, APRIL 2012 <br>
 +
              <strong>(2). </strong>Birgit Klinkert and Franz  Narberhaus.  Microbial thermosensors.  <em>Cell.  Mol. Life Sci.</em>  (2009) 66:2661–2676<br>
 +
              <strong>(3).</strong> Miyo Terao Morita, Yoshiyuki  Tanaka, Takashi S. Kodama, Yoshimasa Kyogoku,<br>
 +
              Hideki Yanagi and Takashi Yura.  Translational induction of heat shock transcription  factor sigma32: evidence for a built-in RNA thermosensor..  <em>Genes Dev. </em>1999 13: 655-665 <br>
 +
              <strong>(4). </strong>David H. Mathews.  Revolutions in RNA Secondary Structure  Prediction.  <em>J. Mol. Biol.</em> (2006) 359, 526–532<br>
 +
              <strong>(5).</strong> David H Mathews and Douglas H  Turner.  Prediction of RNA secondary  structure by free energy minimization.  <em>Current Opinion in Structural Biology</em> 2006, 16:270–278<br>
 +
              <strong>(6).</strong> J. S. McCASKlLL.  The Equilibrium Partition Function and Base  Pair Binding Probabilities for RNA Secondary Structure.  <em>Biopolymers</em>,  Vol. 29,1105-1119 (1990)<br>
 +
              <strong>(7). </strong><a href="http://www.tbi.univie.ac.at/~ivo/RNA/">http://www.tbi.univie.ac.at/~ivo/RNA/</a> <br>
 +
              <strong>(8).</strong> <a href="http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html">http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html</a> <br>
 +
              <strong>(9).</strong> L.  Hofacker, W. Fontan.  Fast folding and  comparison of RNA secondary structures. <em>Monatshefte  fur Chemie </em>, 125, 167-188.<br>
 +
              <strong>(10).</strong> In-Line Probing Analysis of  Riboswitches.Elizabeth E.  Regulski and  Ronald R. Breaker.  <em>NATURE PROTOCOL  EXCHANGE </em><a href="http://www.nature.com/protocolexchange/protocols/1889">http://www.nature.com/protocolexchange/protocols/1889</a> </p>
 +
            <p align="left">&nbsp;</p>
 +
            <p align="left"><strong>Acknowledgement</strong></p>
 +
            <p align="left">Thank  Prof. CHEN Guoqiang, Prof. SUN Zhirong and Prof. DAI Junbiao for devoting  guidance in the project.  Thank Prof. Tom  Kelie for his careful revision of the PPT and the report.  Thanks Dr. YIN Ping and Dr. QU Peng for his  kind help in the RNA experiments.  Thanks  FU Xiaozhi and LI Teng for their generous help in the molecular biology  experiment.</p>
 +
            <p align="left">&nbsp;</p>
 +
            <p align="left"><strong>Supporting online materials</strong></p>
 +
          </blockquote>
 +
        </li>
 +
       </ul>    </td>
   </tr>
   </tr>
   <tr>
   <tr>

Revision as of 11:34, 24 September 2012


无标题文档

A Computer-aided Temperature-response Regulatory RNA Design

CHEN Huaiqing1, CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI Tianyi1, LI Zhangqinang1, PENG Liying2, SUN Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE Hengyi1, YANG Tianfang2, SHI Binbin2,※ and DING Hongxu2,

  • School of life science, Tsinghua University
  • iGEM Tsinghua-D team, Tsinghua University

    . To whom correspondence should be addressed, SHI Binbin, ltbyshi@gmail.com; DING Hongxu, poulainding@163.com.

     

    Abstract  The first software that can design temperature-sensing regulatory RNA – RNAThermo is presented in this article.  Parameters were set and several temperature-sensing regulatory RNA sequences were given by the RNAThermo.  The designed RNAs are verified both on the structural and functional aspects.  At the end of the article, RNAThermo’s potential application in fermentation industry is discussed.

    Keywords: RNA Thermometer, computer, design

     

    Introduction

    Besides exploration, explanation and prediction, the ultimate goal of science is creation.  In the field of life science, enthusiasm towards creation originates the synthetic biology.  During the last decade, numerous artificial biological networks had been made.  However, no nodes within these networks are artificially made thus such networks cannot be recognized as ‘created’.            Recently, the creation of nodes inside biological networks emerges as a hotspot.  Because of its structural simplicity and manipulation convenience, RNATs become an ideal model for conducting such researches.

     

    RNA Thermometer (RNAT)

    Resides in the 5’ untranslated region (5’UTR) of the whole mRNA, RNA thermometer (RNAT) is a kind of temperature-sensing sequence.  As the environmental temperature changes, the RNAT can fold into a series of different secondary structure.  Some of the structures can block ribosomes’ access to the mRNA thus hinder translation (referred to as unmelted structure).  Other structures can cause ribosomes’ binding to the mRNA and the initiation of translation (referred to as melted structure).  By shifting from the two kinds of structures, the RNAT regulate gene expression in the level of translation (1)

     

    The software RNAThermo can design RNATs that meet the given parameters

    Based on biological and physical principle, adapting computer algorithms, RNAThermo designs RNATs that meet the given parameters.  What the user should tell the software are the regulation temperature, the structure (both unmelted structure and melted structure) of the RNAT and the SD sequence position of the RNAT.  RNAThermo gives the sequences of RNATs that fulfill these requirements. 

     

    The design of RNATs based on biological principle

    The principle behind the RNATs’ response to temperature is simple: At low temperatures, sequence that binds to ribosome will be trapped in a hairpin structure.  Increasing temperature destabilizes the structure such that the trapped sequence becomes accessible, allowing translation to be initiated.  The following (Figure 1) is the schematic diagram (2):

    Figure 1.  Structural change of RNAT’s according to the environmental temperature.  The SD stands for Shine-Dalgarno sequence, which is recognized and bind by ribosome to initiate translation.  The AUG stands for start codon, from where the translation begins.

    One example for this mechanism is the regulation of E.Coli’s rpoH gene (Figure 2).  Responded to environmental temperature change, rpoH gene regulates the expression of the heat shock protein.  Low temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding.  High temperature (42 °C) disrupt the bend and initiate the process of translation (3).

    Figure 2.  a. Formation of stem III in the rpoH transcript at low temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding.  b. A rise in temperature to 42 °C opens stem III and stem I of the rpoH mRNA, liberates the AUG start codon and DB region, facilitates ribosome binding.

    Inspired by such mechanism, our group designed a series of RNATs whose SD sequence will have trap-release structural change according to the environmental temperature.  The following is the schematic diagram of the RNATs we designed (Figure 3):

    Figure 3.  Schematic diagram of the RNATs we designed.  The red box indicates the SD sequence.

     

    The design of RNATs based on physical principle

    To give RNAT sequences that meet the given parameters, the central problem is to predict RNATs’ secondary structure at a given temperature.  Two methods are adapted according to the computer algorithm’s requirement (More details will be articulated in ‘The design of RNATs adapting computer algorithms’). 

    One principle adapted in predicting RNA secondary structure is free energy minimization (4).  Secondary structure with the least free energy is considered to be the optimal solution (5).

    Another principle adapted here is partition function method (6).  Rather than give one definite structure as the free energy minimization method, partition function tells the probability of each secondary structure’s appearance.  In the following equation, Q stands for partition function and P (structure) stands for the probability of one specific structure’s appearance.

     

    The design of RNATs adapting computer algorithms

    This part is included in another page of our wiki.

     

    Verification of the designed RNATs’ secondary structure

    The first step in verification the in silico design is testifying the designed structure in vitro.  In-line probing method is adapted to measure the RNATs’ structure (10).  The results are as shown in Figure 5.

     

    Figure 5

     

    Verification of the designed RNATs’ temperature-sensing regulatory function

    Then, rectification of the temperature-response regulatory function in vivo should be taken in verification of the in silico design.  GFP is adapted as reporter gene in measuring the RNATs’ temperature-response regulatory function.  The results are shown in Figure 6.

    Figure 6

     

    Potential Application in Fermentation Industry

    Computer aided RNAT design provides a new method for achieving controlled expression of products in fermentation industry.  Engineered microorganisms sense a temperature signal and initiate the regulation.  The results are shown in Figure 7.


    Figure 7

     

    Reference
    (1). Jens Kortmann and Franz Narberhaus.  Bacterial RNA thermometers: molecular zippers and switches.  NATURE REVIEWS MICROBIOLOGY, VOLUME 10, 265, APRIL 2012
    (2). Birgit Klinkert and Franz Narberhaus.  Microbial thermosensors.  Cell. Mol. Life Sci.  (2009) 66:2661–2676
    (3). Miyo Terao Morita, Yoshiyuki Tanaka, Takashi S. Kodama, Yoshimasa Kyogoku,
    Hideki Yanagi and Takashi Yura.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor..  Genes Dev. 1999 13: 655-665
    (4). David H. Mathews.  Revolutions in RNA Secondary Structure Prediction.  J. Mol. Biol. (2006) 359, 526–532
    (5). David H Mathews and Douglas H Turner.  Prediction of RNA secondary structure by free energy minimization.  Current Opinion in Structural Biology 2006, 16:270–278
    (6). J. S. McCASKlLL.  The Equilibrium Partition Function and Base Pair Binding Probabilities for RNA Secondary Structure.  Biopolymers, Vol. 29,1105-1119 (1990)
    (7). http://www.tbi.univie.ac.at/~ivo/RNA/
    (8). http://www.tbi.univie.ac.at/~ivo/RNA/man/RNAfold.html
    (9). L. Hofacker, W. Fontan.  Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie , 125, 167-188.
    (10). In-Line Probing Analysis of Riboswitches.Elizabeth E.  Regulski and Ronald R. Breaker.  NATURE PROTOCOL EXCHANGE http://www.nature.com/protocolexchange/protocols/1889

     

    Acknowledgement

    Thank Prof. CHEN Guoqiang, Prof. SUN Zhirong and Prof. DAI Junbiao for devoting guidance in the project.  Thank Prof. Tom Kelie for his careful revision of the PPT and the report.  Thanks Dr. YIN Ping and Dr. QU Peng for his kind help in the RNA experiments.  Thanks FU Xiaozhi and LI Teng for their generous help in the molecular biology experiment.

     

    Supporting online materials