Team:Carnegie Mellon

From 2012.igem.org

(Difference between revisions)
Line 406: Line 406:
<p> <a href="https://2012.igem.org/Team:Carnegie_Mellon" class="external text" title="https://2012.igem.org/Team:Carnegie_Mellon" rel="nofollow">FAQ/Terminology</a> in engineering <i>Escherichia coli</i> to <b>monitor these variables via fluorescence</b>. Find out more about Carnegie Mellon: (<a href="http://www.cmu.edu" class="external text" title="http://www.cmu.edu" rel="nofollow">CMU Home Page</a>).
<p> <a href="https://2012.igem.org/Team:Carnegie_Mellon" class="external text" title="https://2012.igem.org/Team:Carnegie_Mellon" rel="nofollow">FAQ/Terminology</a> in engineering <i>Escherichia coli</i> to <b>monitor these variables via fluorescence</b>. Find out more about Carnegie Mellon: (<a href="http://www.cmu.edu" class="external text" title="http://www.cmu.edu" rel="nofollow">CMU Home Page</a>).
</p>
</p>
-
<p> As part of our project, we seek to intrigue high school students about synthetic biology and engineering. In this pursuit, we developed an electrical analog of our BioBricks to teach high school students about:
+
<p> As part of our project, we seek to intrigue high school students about synthetic biology and engineering. In this pursuit, we developed an electrical analog of our BioBricks (with a simulated microscope using LEDs and a photoresistor) to teach high school students about:
<ol><li> Biological systems and synthetic biology
<ol><li> Biological systems and synthetic biology
 +
</li><li> Teamwork in research
 +
</li><li> The interdisciplinary nature of synthetic biology
 +
</li><li> Challenges in interdisciplinary work and how teams overcome these boundaries
</li><li> Gene expression and the central dogma of molecular biology
</li><li> Gene expression and the central dogma of molecular biology
</li><li> How our BioBrick can be used as a measurement system
</li><li> How our BioBrick can be used as a measurement system
-
</li><li> How scientists tackle real-world problems using an interactive simulation that allows the use of our BioBrick and synthetic biological principles
+
</li><li> How scientists tackle real-world problems using an interactive simulation that demonstrates the use of our BioBrick and synthetic biological principles
</li></ol>
</li></ol>
</p>
</p>

Revision as of 05:16, 20 June 2012

Carnegie Mellon iGEM 2012


Welcome to Carnegie Mellon University 2012 iGEM Team Wiki!

Image:Cmu2.jpeg

 

Contents

Introduction: Motivation


What is Spinach?

Spinach is a green fluorescent RNA sequence that can be expressed in cells (in this case, E. coli ) that can be used to quantify RNA concentration in a cell. Spinach binds to an organic dye called DFHBI which doesn't fluoresce by itself but fluoresces very brightly when it is bound to Spinach. DFHBI is chemically derived from the chromophore in GFP but is altered to increase brightness when bound to RNA. Other fluorescent RNAs have been described but many are non-specific and have many unwanted functions like cytotoxicity. Manipulations to the sequence that Spinach is attached to allows for a variety of analyses functions. RNA can be arranged to bind to just about any small molecule in the same way that Spinach was developed (using a SELEX method) to track cellular metabolites. This allows for quantification of another important system in cells. However, in our system, Spinach is incorporated in the mRNA (between the promoter and the RBS) so mRNA is quantified. Click for more information on Spinach. Spinach is the first published RNA sequence of its kind and more sequence/dye combinations are in development; as a result, in years to come, multiple genes (both RNA and protein) can be analyzed in great detail simultaneously.

What is a FAP?

A fluorogen activating protein is a small (26-35kD) protein that derives from the variable region in an antibody. FAPs are not fluorescent unless a fluorogen (also not normally fluorescent) is added, in which case the FAP changes the conformation of the fluorogen and the complex fluoresces brightly. FAPs are currently used to tag certain proteins like actin or tubulin in mammalian cells. FAPs are not primarily expressed in E. coli although we have expressed certain FAPs in E. coli. The two main dyes that the current series of FAPs bind to are malachite green and thiazole orange; our construct uses a variant that binds to malachite green. These dyes are normally cell impermeable but can be designed to penetrate cell membranes. As a result, they were originally used to tag surface proteins. FAPs are excellent reporters because they are small proteins that are soluble and have virtually no maturation time and are highly photostable unlike traditional variants of GFP. FAP technology is widely unexplored but shows promise for new fluorescent technology. FAPs have been used to track individual molecules to 5nm definition as opposed to the typical 200nm. New dyes are being developed that can increase intensity and can allow researchers to improve on live cell imaging techniques. FAPs are genetically different so researchers can image multiple proteins at the same time in order to understand complex biological processes.

Why is this project important?

Retrieved from "http://2012.igem.org/Team:Carnegie_Mellon"