Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 39: Line 39:
<h3 id="plasmid-concentration">Plasmid concentration</h3>
<h3 id="plasmid-concentration">Plasmid concentration</h3>
-
<p>According to <span class="citation"></span> it is expected approximately 100-300 plasmid inside the bacterium (high copy) and approximately 10 plasmids (low copy). So, using the equation we have:  
+
<p>According to <span class="citation"></span> it is expected approximately 100-300 plasmid inside the bacterium (high copy) and approximately 10 plasmids (low copy). So, using the equation we have:  
</p>
</p>
<ul>
<ul>
Line 50: Line 50:
<p>To estimate the concentration of recombinase we used a simple model:
<p>To estimate the concentration of recombinase we used a simple model:
</p>
</p>
-
<p><br /><span class="math">$\begin{aligned}
+
<p><br /><span class="math">$\frac{d}{dt}[mRNA] = \frac{k_{tran}}{V n_{bp}} - k_{dRNA} [mRNA]$</span><br />
-
    &amp;\frac{d}{dt}[mRNA] = \frac{k_{tran}}{V n_{bp}} - k_{dRNA} [mRNA] \nn
+
</p>
-
    &amp;\frac{d}{dt}[Prot] = \frac{k_{trad}[mRNA]}{n_{aa}} - k_{dProt} [Prot] \nn\end{aligned}$</span><br />
+
<p><br /><span class="math">$\frac{d}{dt}[Prot] = \frac{k_{trad}[mRNA]}{n_{aa}} - k_{dProt} [Prot] $</span><br />
</p>
</p>
<p>where the constant <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>n</em></sub></span> represents the translation rate, <span class="math"><em>V</em></span> refers to the volume of bacterium, <span class="math"><em>n</em><sub><em>b</em><em>p</em></sub></span> refers to the number of base pairs of the protein, <span class="math"><em>k</em><sub><em>d</em><em>R</em><em>N</em><em>A</em></sub></span> represents the mRNA degradation rate, <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>d</em></sub></span> represents the traduction rate, <span class="math"><em>n</em><sub><em>a</em><em>a</em></sub></span> the number of amino acids of the protein and <span class="math"><em>k</em><sub><em>d</em><em>P</em><em>r</em><em>o</em><em>t</em></sub></span> the degradation rate of the protein.</p>
<p>where the constant <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>n</em></sub></span> represents the translation rate, <span class="math"><em>V</em></span> refers to the volume of bacterium, <span class="math"><em>n</em><sub><em>b</em><em>p</em></sub></span> refers to the number of base pairs of the protein, <span class="math"><em>k</em><sub><em>d</em><em>R</em><em>N</em><em>A</em></sub></span> represents the mRNA degradation rate, <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>d</em></sub></span> represents the traduction rate, <span class="math"><em>n</em><sub><em>a</em><em>a</em></sub></span> the number of amino acids of the protein and <span class="math"><em>k</em><sub><em>d</em><em>P</em><em>r</em><em>o</em><em>t</em></sub></span> the degradation rate of the protein.</p>
<p>
<p>
-
The values of these constants were obtained in <span class="citation"></span> and are presented below:</p>
+
The values of these constants were obtained in [2] and are presented below:
-
<p><br /><span class="math">$\begin{aligned}
+
</p>
-
    &amp;k_{degRNA} = 1/350 \hspace{0.1cm} (1/sec)\nn
+
<ul>
-
    &amp;k_{transcription} = 40 \hspace{0.1cm} (bp/sec) \hspace{1.6cm} for\hspace{0.2cm} T7 \hspace{0.2cm} promoter\nn 
+
<li><p><span class="math">$k_{degRNA} = 1/350$</span> (1/sec).</p></li>
-
    &amp;k_{translation} = 15 \hspace{0.1cm} (aa/sec) \nn
+
<li><p><span class="math">$k_{transcription} = 40$</span> (bp/sec) for T7 promoter.</p></li>
-
    &amp;k_{degProt} = 0.0167/60 \hspace{0.1cm} (Prot/sec)\hspace{0.3cm} Average\hspace{0.1cm}protein \hspace{0.1cm}degradation \nn
+
<li><p><span class="math">$k_{translation} = 15$</span> (aa/sec).</p></li>
-
    &amp;n_{bp} = 1032 \hspace{3.6cm} for \hspace{0.1cm} CRE \nn
+
<li><p><span class="math">$k_{degProt} = 0.0167/60$</span> (Prot/sec) Average protein degradation.</p></li>
-
    &amp;n_{aa} = n_{bp}/3 = 344 \hspace{2.4cm} for \hspace{0.1cm} CRE \nn
+
<li><p><span class="math">$n_{bp} = 1032$</span> for CRE.</p></li>
-
    &amp;n_{bp} = 1119 \hspace{3.6cm} for \hspace{0.1cm} FLP \nn
+
<li><p><span class="math">$n_{aa} = n_{bp}/3 = 344$</span> for CRE.</p></li>
-
    &amp;n_{aa} = n_{bp}/3 = 373 \hspace{2.4cm} for \hspace{0.1cm} FLP \nn\end{aligned}$</span><br /></p>
+
<li><p><span class="math">$n_{bp} = 1119$</span> for FLP.</p></li>
 +
<li><p><span class="math">$n_{aa} = n_{bp}/3 = 373$</span> for FLP.</p></li>
 +
</ul>
 +
<p>
 +
 
<p>Once we want the concentration of the protein in the equilibrium state, both equations are equal to zero:</p>
<p>Once we want the concentration of the protein in the equilibrium state, both equations are equal to zero:</p>
<p><br /><span class="math">$\begin{aligned}
<p><br /><span class="math">$\begin{aligned}

Revision as of 18:11, 23 September 2012