Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 21: Line 21:
<p>where <span class="math"><em>M</em></span> represents the concentration of recombinase monomers, <span class="math"><em>k</em><sub>1</sub></span> and <span class="math"><em>k</em><sub>−1</sub></span> represent the association and dissociation rate constant, respectively. As described in the above equation, there is only two possibilities of changing the concentration of the state <span class="math"><em>S</em></span>: it can increase (positive sign) if a molecule in the state <span class="math"><em>S</em><sub><em>a</em></sub></span> loses the monomer or it can decrease (negative sign) if a monomer binds the DNA.</p>
<p>where <span class="math"><em>M</em></span> represents the concentration of recombinase monomers, <span class="math"><em>k</em><sub>1</sub></span> and <span class="math"><em>k</em><sub>−1</sub></span> represent the association and dissociation rate constant, respectively. As described in the above equation, there is only two possibilities of changing the concentration of the state <span class="math"><em>S</em></span>: it can increase (positive sign) if a molecule in the state <span class="math"><em>S</em><sub><em>a</em></sub></span> loses the monomer or it can decrease (negative sign) if a monomer binds the DNA.</p>
-
<p>Using gel mobility shift assays it is possible to estimate the affinity of the monomer for their target site, represented by the parameters <span class="math"><em>k</em><sub>−1</sub></span> and <span class="math"><em>k</em><sub>1</sub></span>, as described by Ringrose et al <span class="citation"></span>. They also estimate, using the same proceeding, the parameters <span class="math"><em>k</em><sub>−2</sub></span> and <span class="math"><em>k</em><sub>2</sub></span> referring to the association and dissociation rate constant of the monomer for a target site when the neighbor site is already occupied by another monomer. Other parameters (<span class="math"><em>k</em><sub>34</sub></span>, <span class="math"><em>k</em><sub>−34</sub></span>, <span class="math"><em>k</em><sub>5</sub></span> and <span class="math"><em>k</em><sub>−5</sub></span>) were determined by the authors comparing the simulated and in vitro recombination data, see Table 1. The entire recombination reaction is illustrated in the figure .</p>
+
<p>Using gel mobility shift assays it is possible to estimate the affinity of the monomer for their target site, represented by the parameters <span class="math"><em>k</em><sub>−1</sub></span> and <span class="math"><em>k</em><sub>1</sub></span>, as described by Ringrose et al <span class="citation"></span>. They also estimate, using the same proceeding, the parameters <span class="math"><em>k</em><sub>−2</sub></span> and <span class="math"><em>k</em><sub>2</sub></span> referring to the association and dissociation rate constant of the monomer for a target site when the neighbor site is already occupied by another monomer. Other parameters (<span class="math"><em>k</em><sub>34</sub></span>, <span class="math"><em>k</em><sub>−34</sub></span>, <span class="math"><em>k</em><sub>5</sub></span> and <span class="math"><em>k</em><sub>−5</sub></span>) were determined by the authors comparing the simulated and in vitro recombination data, see Table 1. The entire recombination reaction is illustrated in the Fig. 1.</p>
{{:Team:USP-UNESP-Brazil/Templates/RImage | image=Table1_pplay.jpeg | caption=Table 1. Association and dissociation rate constants for FLP and Cre binding to DNA, obtained by [1]. | size=600px }}
{{:Team:USP-UNESP-Brazil/Templates/RImage | image=Table1_pplay.jpeg | caption=Table 1. Association and dissociation rate constants for FLP and Cre binding to DNA, obtained by [1]. | size=600px }}
Line 34: Line 34:
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
</ul>
</ul>
-
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to [??]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0. 7 * 10<sup> − 15</sup><em>L</em></span><br />. Using this, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration (<br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6 * 10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br />).</p>
+
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to [2]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0.7*10<sup>−15</sup><em>L</em></span><br />. Using this, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration (<br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6 * 10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br />).</p>
-
<p><br /><span class="math">$[1 molecule] = 1 molecule/(0.7 10^{-15} L) = \frac{1}{6 10^{23}  
+
<p><br /><span class="math">$[1 molec] = 1/(0.7*10^{-15} L) = \frac{1}{6*10^{23}  
-
0.7 10^{-15}}M \simeq 10^{-9} M = 1nM$</span><br /></p>
+
0.7*10^{-15}}M \simeq 10^{-9} M = 1 nM$</span><br /></p>
<h3 id="plasmid-concentration">Plasmid concentration</h3>
<h3 id="plasmid-concentration">Plasmid concentration</h3>
-
<p>According to <span class="citation"></span> it is expected approximately 100-300 plasmid inside the bacterium (high copy) and approximately 10 plasmids (low copy). So, using the equation  we have: <br /><span class="math">$[P]_0 \simeq 100\hspace{0.1cm} nM   (high  copy)$</span><br /> <br /><span class="math">$[P]_0 \simeq 10\hspace{0.1cm} nM (lowcopy)$</span><br /></p>
+
<p>According to <span class="citation"></span> it is expected approximately 100-300 plasmid inside the bacterium (high copy) and approximately 10 plasmids (low copy). So, using the equation  we have:  
 +
</p>
 +
<ul>
 +
<li><p><span class="math">$[P]_0 \simeq 10 nM$</span> - high copy plasmid.</p></li>
 +
<li><p><span class="math">$[P]_0 \simeq 100 nM$</span> - low copy plasmid.</p></li>
 +
</ul>
 +
<p>
<h3 id="estimating-recombinase-concentration.">Estimating Recombinase Concentration.</h3>
<h3 id="estimating-recombinase-concentration.">Estimating Recombinase Concentration.</h3>

Revision as of 17:58, 23 September 2012