Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 30: Line 30:
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
</ul>
</ul>
-
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to [??]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0. 7 * 10<sup> − 15</sup><em>L</em></span><br />. Using this, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration (<br/><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6 * 10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br />).</p>
+
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to [??]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0. 7 * 10<sup> − 15</sup><em>L</em></span><br />. Using this, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration (<br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6 * 10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br />).</p>
<p><br /><span class="math">$[1 molecule] = 1 molecule/(0.7 10^{-15} L) = \frac{1}{6 10^{23}  
<p><br /><span class="math">$[1 molecule] = 1 molecule/(0.7 10^{-15} L) = \frac{1}{6 10^{23}  
0.7 10^{-15}}M \simeq 10^{-9} M = 1nM$</span><br /></p>
0.7 10^{-15}}M \simeq 10^{-9} M = 1nM$</span><br /></p>
Line 38: Line 38:
<h3 id="estimating-recombinase-concentration.">Estimating Recombinase Concentration.</h3>
<h3 id="estimating-recombinase-concentration.">Estimating Recombinase Concentration.</h3>
-
<p>To estimate the concentration of recombinase we used a simple model:</p>
+
<p>To estimate the concentration of recombinase we used a simple model:
 +
</p>
<p><br /><span class="math">$\begin{aligned}
<p><br /><span class="math">$\begin{aligned}
-
     &amp;\frac{d}{dt}[mRNA] = \frac{k_{tran}}{V\hspace{0.1cm}n_{bp}} - k_{dRNA} [mRNA] \nn
+
     &amp;\frac{d}{dt}[mRNA] = \frac{k_{tran}}{V n_{bp}} - k_{dRNA} [mRNA] \nn
-
     &amp;\frac{d}{dt}[Prot] = \frac{k_{trad}[mRNA]}{n_{aa}} - k_{dProt} [Prot] \nn\end{aligned}$</span><br /></p>
+
     &amp;\frac{d}{dt}[Prot] = \frac{k_{trad}[mRNA]}{n_{aa}} - k_{dProt} [Prot] \nn\end{aligned}$</span><br />
 +
</p>
<p>where the constant <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>n</em></sub></span> represents the translation rate, <span class="math"><em>V</em></span> refers to the volume of bacterium, <span class="math"><em>n</em><sub><em>b</em><em>p</em></sub></span> refers to the number of base pairs of the protein, <span class="math"><em>k</em><sub><em>d</em><em>R</em><em>N</em><em>A</em></sub></span> represents the mRNA degradation rate, <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>d</em></sub></span> represents the traduction rate, <span class="math"><em>n</em><sub><em>a</em><em>a</em></sub></span> the number of amino acids of the protein and <span class="math"><em>k</em><sub><em>d</em><em>P</em><em>r</em><em>o</em><em>t</em></sub></span> the degradation rate of the protein.</p>
<p>where the constant <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>n</em></sub></span> represents the translation rate, <span class="math"><em>V</em></span> refers to the volume of bacterium, <span class="math"><em>n</em><sub><em>b</em><em>p</em></sub></span> refers to the number of base pairs of the protein, <span class="math"><em>k</em><sub><em>d</em><em>R</em><em>N</em><em>A</em></sub></span> represents the mRNA degradation rate, <span class="math"><em>k</em><sub><em>t</em><em>r</em><em>a</em><em>d</em></sub></span> represents the traduction rate, <span class="math"><em>n</em><sub><em>a</em><em>a</em></sub></span> the number of amino acids of the protein and <span class="math"><em>k</em><sub><em>d</em><em>P</em><em>r</em><em>o</em><em>t</em></sub></span> the degradation rate of the protein.</p>
-
<p>The values of these constants were obtained in <span class="citation"></span> and are presented below:</p>
+
<p>
 +
The values of these constants were obtained in <span class="citation"></span> and are presented below:</p>
<p><br /><span class="math">$\begin{aligned}
<p><br /><span class="math">$\begin{aligned}
     &amp;k_{degRNA} = 1/350 \hspace{0.1cm} (1/sec)\nn
     &amp;k_{degRNA} = 1/350 \hspace{0.1cm} (1/sec)\nn

Revision as of 22:22, 21 September 2012