Team:Washington
From 2012.igem.org
Line 25: | Line 25: | ||
<style type="text/css"> | <style type="text/css"> | ||
.view { | .view { | ||
- | width: | + | width: 225px; |
- | height: | + | height: 225px; |
margin: 2px; | margin: 2px; | ||
float: left; | float: left; | ||
Line 38: | Line 38: | ||
} | } | ||
.view .mask, .view .content { | .view .mask, .view .content { | ||
- | width: | + | width: 225px; |
- | height: | + | height: 225px; |
position: absolute; | position: absolute; | ||
overflow: hidden; | overflow: hidden; | ||
Line 54: | Line 54: | ||
position: relative; | position: relative; | ||
font-family: Arial; | font-family: Arial; | ||
- | font-size: | + | font-size: 20px; |
- | padding: | + | padding: 20px 5px 5px; |
background: rgba(0, 0, 0, 0.8); | background: rgba(0, 0, 0, 0.8); | ||
- | margin: | + | margin: 30px 0 0 0 |
} | } | ||
.view p { | .view p { | ||
font-family: Arial; | font-family: Arial; | ||
- | font-size: | + | font-size: 18px; |
position: relative; | position: relative; | ||
color: #fff; | color: #fff; | ||
Line 173: | Line 173: | ||
<div class="view view-tenth"> | <div class="view view-tenth"> | ||
<img src="https://static.igem.org/mediawiki/2012/e/e0/Lightapp.png" /> | <img src="https://static.igem.org/mediawiki/2012/e/e0/Lightapp.png" /> | ||
+ | <div class="mask"> | ||
+ | <h2>Opto-genetics</h2> | ||
+ | <p>Shine a light (or several)</p> | ||
+ | <a href="https://2012.igem.org/Team:Washington/Optogenetics" class="info">Read More</a> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="view view-tenth"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/c/ce/Community.png" /> | ||
<div class="mask"> | <div class="mask"> | ||
<h2>Opto-genetics</h2> | <h2>Opto-genetics</h2> |
Revision as of 23:28, 18 September 2012
Overview:
Biological systems must often be painstakingly tuned before they will efficiently produce drugs or biofuels, degrade chemicals, or perform other useful tasks. Our team implemented broadly applicable methods to optimize biological systems through directed evolution, light-regulated gene expression, and computer aided protein design. We characterized light-inducible protein expression systems for multichromatic tuning of biological pathways. To provide an inexpensive method for tuning gene expression with light, we developed a tablet application that is freely available. We also used computer-aided design to develop proteins that more effectively bind isotypes of the flu protein Hemagglutinin. Finally, we implemented a continuous culture device (turbidostat) in order to apply directed evolution to the metabolism of ethylene glycol in E. coli. We have termed the research conducted this year “Apptogenetics” as all projects utilize purpose-built computational applications for biological research.