Team:USP-UNESP-Brazil/Project
From 2012.igem.org
(→Overall project) |
(→Plug&Play Plasmid) |
||
Line 46: | Line 46: | ||
=== Plug&Play Plasmid === | === Plug&Play Plasmid === | ||
- | + | Aware of the necessity of techniques to produce biological standardize parts in a high throughput manner we developed a project that aims to build a machine, called Plug&Play, that express any protein using the Cre-Recombinase system. For this purpose, we designed a plasmid that has a mutated recombination site for the Cre-recombinase, in which the desired ORF (open reading frame) is going to be inserted, upstream the insertion site is located a promoter ready to transcript the gene into the desire protein. The plasmid has also, a resistance gene to ampicillin that maintain it inside the cell as long as the antibiotic is applied in the culture medium. This is a high throughput system for expressing proteins that allows putative (or new build) genes prospection, which is mean to be an open source tool. | |
- | + | ||
- | + | ||
- | + | ||
- | plasmid that | + | |
- | ( | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
For more information about this project,[[Team:USP-UNESP-Brazil/Project2| click here! ]] | For more information about this project,[[Team:USP-UNESP-Brazil/Project2| click here! ]] |
Revision as of 15:56, 15 September 2012
Home | Team | Official Team Profile | Projects | Parts Submitted to the Registry | Modeling | Notebook | Safety | Attributions |
---|
Contents |
Synthetic Biology
Synthetic Biology is an emerging field that aims to modify organisms to perform new tasks by either constructing new biological parts, devices and systems or by re-designing an already existing system turning it into a useful purpose for humankind.
The difference to classical molecular biology is the use of engineering concepts, as complexity abstraction and standardization of parts, into the design of molecular circuits. This approach allows to produce more reliable systems build from bottom to top (from genetic circuits to complex metabolic pathways), allowing to create more complex systems that the already known in classical molecular biology. This field requires easy access to standardized biological parts and devices, well-known cells where DNA programs can be assembled and powered, as well as, computational tools to analyze the created systems.
Overall project
Since we are a big team and it's our first participation on iGEM, we have two projects going on at the same time. The first one is "Associative Memory Network Using Bacteria" and "Plug&Play Plasmid"
Associative Memory Network Using Bacteria
The memory storage in biological systems has a critical role in biotechnology development. A systemic way of storing a specific memory that can be recovered and used at any moment is studied in several experiments and mathematical models involving neural networks. One of these models, known as “Hopfield Network”, considers the memory storage as a neurons association that shares a characteristic pattern of “communication intensity” – the “measure unity” of a neuron network . This model is notorious for allowing systems the recognizing of patterns.
In this project we propose the genesis of aa communication network using E.coli populations, in order to create a system with associative memory ,like a Hopfield Model. Genetically different populations will be generated and isolated from each other, keeping contact by means of Quorum Sensing Substances (QSS). These QSS will be responsible by inhibition or excitation of pre-determined populations, measuring the amount of excitation by means of GFP fluorescent level. The final objective is to achieve a specific complete pattern of excited and inhibited populations by means of the interactions between bacteria populations, based on an given incomplete pattern. The network will behave in way of recognizing this pattern and choose between two systemic memories inserted on the communication network.
For more information about this project, click here!
Plug&Play Plasmid
Aware of the necessity of techniques to produce biological standardize parts in a high throughput manner we developed a project that aims to build a machine, called Plug&Play, that express any protein using the Cre-Recombinase system. For this purpose, we designed a plasmid that has a mutated recombination site for the Cre-recombinase, in which the desired ORF (open reading frame) is going to be inserted, upstream the insertion site is located a promoter ready to transcript the gene into the desire protein. The plasmid has also, a resistance gene to ampicillin that maintain it inside the cell as long as the antibiotic is applied in the culture medium. This is a high throughput system for expressing proteins that allows putative (or new build) genes prospection, which is mean to be an open source tool.
For more information about this project, click here!