Team:British Columbia

From 2012.igem.org

(Difference between revisions)
Line 32: Line 32:
<font size=10><b>Synthetic Syntrophy</b></br></br></font>
<font size=10><b>Synthetic Syntrophy</b></br></br></font>
The field of synthetic biology has seen the development of many biological monocultures capable of performing a wide range of novel functions. In contrast to this current paradigm, microbes have naturally evolved to survive as members of dynamic communities with distributed metabolism. This “divide and conquer” strategy allows the community to perform more complicated metabolic processing than would be possible in single microorganisms while being resilient to environmental changes. Despite very recent proof of concepts in developing model microbial consortia, or synthetic ecology, questions remain as to whether complex metabolic pathways can be engineered in context of microbial populations. The 2012 University of British Columbia iGEM team sets a precedent by engineering a tunable consortium with a distributed 4S desulfurization pathway for increased efficiency in the removal of organosulfurs in heavy oils and bitumen resources.</html>
The field of synthetic biology has seen the development of many biological monocultures capable of performing a wide range of novel functions. In contrast to this current paradigm, microbes have naturally evolved to survive as members of dynamic communities with distributed metabolism. This “divide and conquer” strategy allows the community to perform more complicated metabolic processing than would be possible in single microorganisms while being resilient to environmental changes. Despite very recent proof of concepts in developing model microbial consortia, or synthetic ecology, questions remain as to whether complex metabolic pathways can be engineered in context of microbial populations. The 2012 University of British Columbia iGEM team sets a precedent by engineering a tunable consortium with a distributed 4S desulfurization pathway for increased efficiency in the removal of organosulfurs in heavy oils and bitumen resources.</html>
-
 
-
 
-
 
-
{|width="100%" valign="top"
 
-
! [[Team:British_Columbia | Main]]
 
-
! Project Notes
 
-
! Subprojects
 
-
! Modelling
 
-
|- valign="top"
 
-
|
 
-
* [[Team:British_Columbia/Team | Team UBC Profiles]]
 
-
** [https://igem.org/Team.cgi?year=2012&team_name=British_Columbia 2012 Team Info]
 
-
* [[Team:British_Columbia/Attributions | Attributions]]
 
-
* [[Team:British_Columbia/Team:Wiki Editing Guide | Wiki Editing Guide]]
 
-
* [mailto:ubcigem@gmail.com Contact us!]
 
-
|
 
-
* [[Team:British_Columbia/Project | Overview]]
 
-
* [[Team:British_Columbia/Notebook | General Notebook]]
 
-
** [[Team:British_Columbia/Protocols | Protocols]]
 
-
** [[Team:British_Columbia/Interesting BioBricks | Interesting Biobricks]]
 
-
* [https://docs.google.com/document/d/1eTgQ9s1ISq8h2Zbhz_gFw1o8yoMjEmpNWPTy-aKizFY/edit Ordering List]
 
-
* [[Team:British_Columbia/Safety | Safety]]
 
-
* [[Team:British_Columbia/Human Practices | Human Practices]]
 
-
|
 
-
* [[Team:British_Columbia/New Biobricks | New Biobricks]]
 
-
* [[Team:British_Columbia/NotebookKillSwitches | Kill-switch Testing]]
 
-
* [[Team:British_Columbia/Notebook/Gene Knockouts | Gene Knockouts]]
 
-
* [[Team:British_Columbia/NotebookMisc | Miscellaneous]]
 
-
|
 
-
* [[Team:British_Columbia/Modeling | General Info]]
 
-
* [http://circos.ca/ Circos]?
 
-
* [http://www.tinkercell.com/ Tinkercell]?
 
-
* [http://sprize.synbiota.com/ GENtle]?
 
-
|}
 
-
<hr>
 
-
{| cellspacing="0" cellpadding="0" style="clear: {{{clear|right}}}; margin-bottom: .5em; float: right; padding: .5em 0 .8em 1.4em; background: none; width: {{{width|{{{1|auto}}}}}};" {{#if:{{{limit|}}}|class="toclimit-{{{limit}}}"}}
 
-
| __TOC__
 
-
|}
 

Revision as of 07:02, 14 September 2012

British Columbia - 2012.igem.org















Synthetic Syntrophy

The field of synthetic biology has seen the development of many biological monocultures capable of performing a wide range of novel functions. In contrast to this current paradigm, microbes have naturally evolved to survive as members of dynamic communities with distributed metabolism. This “divide and conquer” strategy allows the community to perform more complicated metabolic processing than would be possible in single microorganisms while being resilient to environmental changes. Despite very recent proof of concepts in developing model microbial consortia, or synthetic ecology, questions remain as to whether complex metabolic pathways can be engineered in context of microbial populations. The 2012 University of British Columbia iGEM team sets a precedent by engineering a tunable consortium with a distributed 4S desulfurization pathway for increased efficiency in the removal of organosulfurs in heavy oils and bitumen resources.