Safety

From 2012.igem.org

(Difference between revisions)
(1. Would any of your project ideas raise safety issues in terms of:)
(1. Would any of your project ideas raise safety issues in terms of:)
Line 93: Line 93:
[[The University of Westminster have a full range of safety documents relating to all laboratory safety issues. Protocols range from the appropriate behaviour in the laboratory to the correct procedure for handling spills. In the three floors where the laboratories are located, by policy it is not allowed to consume any food or drinks as a safety measure. All laboratory users are required to use protective equipment when working in the laboratory, such as laboratory coats, eye protection and gloves, and laboratories are subject to on-the spot inspections to ensure that the policies laid out by the University are being adhered to.
[[The University of Westminster have a full range of safety documents relating to all laboratory safety issues. Protocols range from the appropriate behaviour in the laboratory to the correct procedure for handling spills. In the three floors where the laboratories are located, by policy it is not allowed to consume any food or drinks as a safety measure. All laboratory users are required to use protective equipment when working in the laboratory, such as laboratory coats, eye protection and gloves, and laboratories are subject to on-the spot inspections to ensure that the policies laid out by the University are being adhered to.
-
All potentially hazardous materials are documented in COSHH forms (Microbial and Chemical) which the iGEM team are required to complete themselves. These COSHH forms are prominently displayed in the laboratory and are always carried with the researchers. We are using the DH5α strain of E. coli for amplification of our plasmids. This is a well-studied laboratory strain and is classed as Level 1.
+
All potentially hazardous materials are documented in COSHH forms (Microbial and Chemical) which the iGEM team are required to complete themselves. These COSHH forms are prominently displayed in the laboratory and are always carried with the researchers. We are using the DH5α strain of E. coli for amplification of our plasmids. This is a well-studied laboratory strain and is classed as Level 1.
All our experimental work is in the mammalian cell lines, MG63 and MCF7. MG63 is an osteosarcoma cell line (Level1) and MCF7 is a well characterised breast cancer cell commonly used as a tumor model system. Any risk due to contamination (bacterial, viral, prion) will be taken care of by following approved disposal protocols. Standard mammalian cell culture techniques are designed to minimise the risks of such contamination affecting users. Furthermore a strict- No White Lab Coats policy is in place when entering the mammalian cell culture laboratory.
All our experimental work is in the mammalian cell lines, MG63 and MCF7. MG63 is an osteosarcoma cell line (Level1) and MCF7 is a well characterised breast cancer cell commonly used as a tumor model system. Any risk due to contamination (bacterial, viral, prion) will be taken care of by following approved disposal protocols. Standard mammalian cell culture techniques are designed to minimise the risks of such contamination affecting users. Furthermore a strict- No White Lab Coats policy is in place when entering the mammalian cell culture laboratory.

Revision as of 18:07, 7 September 2012

Safety

Before answering these questions on your team Safety page, be sure to read the Safety in iGEM page. and the FAQ section below.

Key questions

For iGEM 2012, teams are asked to detail how they approached any issues of biological safety associated with their projects. Specifically, teams should consider the following questions:

  1. Would any of your project ideas raise safety issues in terms of:
    • researcher safety,
    • public safety, or
    • environmental safety?
  2. Do any of the new BioBrick parts (or devices) that you made this year raise any safety issues? If yes,
    • did you document these issues in the Registry?
    • how did you manage to handle the safety issue?
    • How could other teams learn from your experience?
  3. Is there a local biosafety group, committee, or review board at your institution?
    • If yes, what does your local biosafety group think about your project?
    • If no, which specific biosafety rules or guidelines do you have to consider in your country?
  4. Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?

 

Teams, please document any answers to these safety questions on your wiki safety page. Judges will be asked to evaluate your project, in part, on the basis of if and how you considered and addressed issues of biological safety. If any questions arise regarding iGEM and biological safety please send an email to safety AT igem.org.


Contents

1. Would any of your project ideas raise safety issues in terms of:

*researcher safety
[[The University of Westminster have a full range of safety documents relating to all laboratory safety issues. Protocols range from the appropriate behaviour in the laboratory to the correct procedure for handling spills. In the three floors where the laboratories are located, by policy it is not allowed to consume any food or drinks as a safety measure. All laboratory users are required to use protective equipment when working in the laboratory, such as laboratory coats, eye protection and gloves, and laboratories are subject to on-the spot inspections to ensure that the policies laid out by the University are being adhered to.

All potentially hazardous materials are documented in COSHH forms (Microbial and Chemical) which the iGEM team are required to complete themselves. These COSHH forms are prominently displayed in the laboratory and are always carried with the researchers. We are using the DH5α strain of E. coli for amplification of our plasmids. This is a well-studied laboratory strain and is classed as Level 1.

All our experimental work is in the mammalian cell lines, MG63 and MCF7. MG63 is an osteosarcoma cell line (Level1) and MCF7 is a well characterised breast cancer cell commonly used as a tumor model system. Any risk due to contamination (bacterial, viral, prion) will be taken care of by following approved disposal protocols. Standard mammalian cell culture techniques are designed to minimise the risks of such contamination affecting users. Furthermore a strict- No White Lab Coats policy is in place when entering the mammalian cell culture laboratory.

All BioBrick parts created and used are non-hazardous as none of them produce toxic levels of substances. The parts we are producing are mammalian promoter sequences. They are amplified from the mammalian cell line, HeLa. Promoters produced are ALDH1A1, ALDH1A3, ALDH2 and ALDH3A1. None of these are harmful. Doxycycline-induced mammalian promoter is amplified from a plasmid and does not produce harmful products.]]

(b) Public safety




*Public Safety
The study is a proof of concept. Risk to public is minimal. The laboratory is kept locked when not in use. Mammalian cell culture laboratory adjoins our main working laboratory and is also locked. None of our transformants produce products which would be toxic to humans. DH5α is a laboratory strain and not associated with disease in healthy humans. Although bacteria would be transformed to have antibiotic resistance, it is not a strain which is able to thrive outside the laboratory. The mammalian cell lines used pose minimal risk to the public as do the products which they express.

*Environmental Safety
DH5α is a genetically engineered lab strain which does not transfer genes and therefore poses minimal risk of transferring antibiotic resistance to other bacteria. The mammalian cells would not survive for extended periods outside the laboratory and therefore is of minimal risk.

2. Do any of the new BioBrick parts (or devices) that you made this year raise safety issues? If yes,

No

3. Is there a local biosafety group, committee, or review board at your institution?

Yes. The management will comply with the NIH Guidelines for Research Involving Recombinant DNA Molecules and be administrated by the Office of Biosafety at the University of Georgia, Athens.


4. Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices and systems be made even safer through biosafety engineering?

To ensure the biosafety, it will be more certified for documents which related materials provided to the participants. Each institution must have own fire fighters and integrates directly with the center of fire fighters and the local police. iGEM is required to add a safety tool for iGEM participants in the DNA kit. To minimize hazardous chemicals, so far the equipment that is used is fairly easy to control these biosafety. The system is recommended to used, better security, is an safety accordance, such as safety SOP, JSA (Job Safety Analyst).

Retrieved from "http://2012.igem.org/Safety"