Team:Penn/HumanPracticesOverview
From 2012.igem.org
Line 21: | Line 21: | ||
</p> | </p> | ||
<br> | <br> | ||
+ | </div> | ||
+ | <div class="bigbox"> | ||
- | <div class=" | + | <b><div class="name" align="center">Biological Barriers to Bacterial Therapeutics</div></b> |
<br> | <br> | ||
<p style="color:black;text-indent:30px;"> | <p style="color:black;text-indent:30px;"> | ||
From a technological standpoint, there is a great deal of work that remains to be done before a bacterial therapeutic can enter the drug development pipeline. While many iGEM teams, including us, have helped set the groundwork for bacterial therapeutics, there are still some biological barriers to a bacterial therapeutic. We identified the immunogenicity of laboratory strains of <i>E. coli.</i> as a major biological barrier. We then investigated methods to decrease the immunogenicity of <i>E. coli.</i>, eventually choosing to port modules of our target drug delivery system into a non-immunogenic strain of <i>E. coli.<i>, Nissle 1917. | From a technological standpoint, there is a great deal of work that remains to be done before a bacterial therapeutic can enter the drug development pipeline. While many iGEM teams, including us, have helped set the groundwork for bacterial therapeutics, there are still some biological barriers to a bacterial therapeutic. We identified the immunogenicity of laboratory strains of <i>E. coli.</i> as a major biological barrier. We then investigated methods to decrease the immunogenicity of <i>E. coli.</i>, eventually choosing to port modules of our target drug delivery system into a non-immunogenic strain of <i>E. coli.<i>, Nissle 1917. | ||
</p> | </p> | ||
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
</div> | </div> | ||
Revision as of 01:11, 27 October 2012
Many previous iGEM teams have tried to implement a bacterial therapeutic as part of their project. Outside of iGEM, there has been a steady interest in engineering bacteria to become therapeutic vectors as well. However, the question that guided our human practices project was essentially: Why aren't bacterial therapeutics transitioning into clinical practice or even clinical trials?
While there are certainly many barriers to bacterial therapeutics such as time and money, we hypothesize that iGEM teams, as a result of their unique positions as research and educational institutions, are positioned to address two major barriers to the adoption of bacterial therapeutics: biological barriers and perception barriers.
From a technological standpoint, there is a great deal of work that remains to be done before a bacterial therapeutic can enter the drug development pipeline. While many iGEM teams, including us, have helped set the groundwork for bacterial therapeutics, there are still some biological barriers to a bacterial therapeutic. We identified the immunogenicity of laboratory strains of E. coli. as a major biological barrier. We then investigated methods to decrease the immunogenicity of E. coli., eventually choosing to port modules of our target drug delivery system into a non-immunogenic strain of E. coli., Nissle 1917.