Team:Johns Hopkins-Wetware/Project
From 2012.igem.org
Mrjiaruiwang (Talk | contribs) |
|||
Line 72: | Line 72: | ||
</div> | </div> | ||
<div class="content"> | <div class="content"> | ||
- | <img src="https://static.igem.org/mediawiki/2012/a/af/Optogenetic-protein-control-diagram.png | + | <a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/lightproject"><img src="https://static.igem.org/mediawiki/2012/a/af/Optogenetic-protein-control-diagram.png |
- | " class="wrap right" width="500px"> | + | " class="wrap right" width="500px"></a> |
<p> | <p> | ||
The ability to inducibly control protein function in vivo can be used to regulate flux through a biosynthetic pathway, minimizing stress on the host cell and maximizing production of a desired compound. Here we use the ePDZ/LOVpep light-induced dimerization system to demonstrate the utility of protein control on pathway engineering in S. cerevisaie. The use of light as a control mechanism has the advantages of being fast-acting, reversible, and amenable to automation in industrial applications. The ePDZ/LOVpep system is particularly advantageous in the setting of optimization of biosynthetic pathway flux as it is tunable. We have envisioned two useful scenarios and built a system to test our ideas: (i) controlling the level of enzymatic activity of a particular protein in a pathway; and (ii) controlling the co-localization of proteins that function sequentially in a pathway. | The ability to inducibly control protein function in vivo can be used to regulate flux through a biosynthetic pathway, minimizing stress on the host cell and maximizing production of a desired compound. Here we use the ePDZ/LOVpep light-induced dimerization system to demonstrate the utility of protein control on pathway engineering in S. cerevisaie. The use of light as a control mechanism has the advantages of being fast-acting, reversible, and amenable to automation in industrial applications. The ePDZ/LOVpep system is particularly advantageous in the setting of optimization of biosynthetic pathway flux as it is tunable. We have envisioned two useful scenarios and built a system to test our ideas: (i) controlling the level of enzymatic activity of a particular protein in a pathway; and (ii) controlling the co-localization of proteins that function sequentially in a pathway. |
Revision as of 01:02, 4 October 2012