Team:Caltech
From 2012.igem.org
(Difference between revisions)
Line 5: | Line 5: | ||
<h1>Biofuels and Bacterial Animations</h1> | <h1>Biofuels and Bacterial Animations</h1> | ||
- | + | <div id="left"> | |
- | < | + | |
- | + | ||
- | + | ||
<p class="tab"> | <p class="tab"> | ||
The Caltech 2012 iGEM <a href="https://2012.igem.org/Team:Caltech/Team">team's</a> project focused on manipulating bacteria to <a href="https://2012.igem.org/Team:Caltech/Project#Degradation_Project">degrade</a> stable organic polymers such as lignin and alginate; using these substrates to <a href="https://2012.igem.org/Team:Caltech/Project#Biofuel_Project">synthesize biofuels</a>, specifically ethanol; and directing their ATP synthesis mechanism to rely on <a href="https://2012.igem.org/Team:Caltech/Project#Proteorhodopsin_Project">proteorhodopsin</a> as the source of the proton gradient, freeing NADH to interact in the synthetic pathway. Caltech is also collaborating with California Institute of the Arts to create an animation using a plate of E. coli transformed with mCherry plasmid. | The Caltech 2012 iGEM <a href="https://2012.igem.org/Team:Caltech/Team">team's</a> project focused on manipulating bacteria to <a href="https://2012.igem.org/Team:Caltech/Project#Degradation_Project">degrade</a> stable organic polymers such as lignin and alginate; using these substrates to <a href="https://2012.igem.org/Team:Caltech/Project#Biofuel_Project">synthesize biofuels</a>, specifically ethanol; and directing their ATP synthesis mechanism to rely on <a href="https://2012.igem.org/Team:Caltech/Project#Proteorhodopsin_Project">proteorhodopsin</a> as the source of the proton gradient, freeing NADH to interact in the synthetic pathway. Caltech is also collaborating with California Institute of the Arts to create an animation using a plate of E. coli transformed with mCherry plasmid. | ||
Line 14: | Line 11: | ||
<img src="https://static.igem.org/mediawiki/2012/c/ca/Caltech_Flowchart.png" alt="Project Flowchart"/> | <img src="https://static.igem.org/mediawiki/2012/c/ca/Caltech_Flowchart.png" alt="Project Flowchart"/> | ||
<img src="https://static.igem.org/mediawiki/2012/b/be/Coliroid.png"> | <img src="https://static.igem.org/mediawiki/2012/b/be/Coliroid.png"> | ||
- | + | </div> | |
- | + | ||
- | </ | + | |
+ | <div id ="right"> | ||
+ | <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab" width="498" height="380" id="test1"> | ||
+ | <param name="movie" value="https://static.igem.org/mediawiki/2012/d/d0/Caltechtorch.swf" /><embed src="https://static.igem.org/mediawiki/2012/d/d0/Caltechtorch.swf" width="498" height="380" name="test1" type="application/x-shockwave-flash" pluginspage="http://www.adobe.com/go/getflashplayer" /></object> | ||
+ | </div> | ||
Revision as of 17:14, 1 October 2012
Biofuels and Bacterial Animations
The Caltech 2012 iGEM team's project focused on manipulating bacteria to degrade stable organic polymers such as lignin and alginate; using these substrates to synthesize biofuels, specifically ethanol; and directing their ATP synthesis mechanism to rely on proteorhodopsin as the source of the proton gradient, freeing NADH to interact in the synthetic pathway. Caltech is also collaborating with California Institute of the Arts to create an animation using a plate of E. coli transformed with mCherry plasmid.