Team:USP-UNESP-Brazil/Associative Memory/Modeling

From 2012.igem.org

(Difference between revisions)
Line 22: Line 22:
<h1 id="model">Mathematical Model</h1>
<h1 id="model">Mathematical Model</h1>
-
<p>Ward et al [1], introduced a mathematical model to describe the growth of populations of bacteria consisting in cell  
+
<p>Ward et al [1] introduced a mathematical model to describe the growth of populations of bacteria consisting in cell  
that can be either up-regulated or down-regulated. An up-regulated cell  produces QSM faster than a down-regulated cell which
that can be either up-regulated or down-regulated. An up-regulated cell  produces QSM faster than a down-regulated cell which
produces it in a basal rate. If the most bacteria in the population is up-regulated we say the population is in quorum.  
produces it in a basal rate. If the most bacteria in the population is up-regulated we say the population is in quorum.  
Line 75: Line 75:
\begin{align}  
\begin{align}  
-
&-\alpha_A A N_{Ad} + \beta_A N_{Au} + \phi_B B N_{Au} = 0 \\
+
&-\alpha_A A N_{Ad} + \beta_A N_{Au} + \phi_B B N_{Au} &= 0 \\
-
&\kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} = 0 \\
+
&\kappa_{Au} N_{Au} + \kappa_{Ad} N_{Ad} - \alpha_A A N_{Ad} - \lambda_A A - \phi_A A N_{Bu} &= 0 \\
-
&-\alpha_B B N_{Bd} + \beta_B N_{Bu} + \phi_A A N_{Bu} = 0 \\
+
&-\alpha_B B N_{Bd} + \beta_B N_{Bu} + \phi_A A N_{Bu} &= 0 \\
-
&\kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} = 0 \\
+
&\kappa_{Bu} N_{Bu} + \kappa_{Bd} N_{Bd} - \alpha_B B N_{Bd} - \lambda_B B - \phi_B B N_{Au} &= 0 \\
-
&N_{Au} + N_{Ad} = K \\
+
&N_{Au} + N_{Ad} &= K \\
-
&N_{Bu} + N_{Bd} = K  
+
&N_{Bu} + N_{Bd} &= K  
\end{align}
\end{align}
Line 86: Line 86:
\begin{align}  
\begin{align}  
-
& \frac{y(\kappa_{Bu} - \kappa_{Bd}) + \kappa_{Bd}}{\alpha_B (1-y) + \lambda^*_B + y\phi_B} &= \frac{\Big[x(\kappa_{Au} - \kappa_{Ad}) + \kappa_{Ad}\Big]\alpha_A (1-x)} {\Big[\alpha_A (1-x) + \lambda^*_A + y\phi_A\Big]x\phi_B} - \frac{\beta_A}{\phi_B} \\  
+
& \frac{y(\kappa_{Bu} - \kappa_{Bd}) + \kappa_{Bd}}{\alpha_B (1-y) + \lambda^*_B + y\phi_B} = \frac{\Big[x(\kappa_{Au} - \kappa_{Ad}) + \kappa_{Ad}\Big]\alpha_A (1-x)} {\Big[\alpha_A (1-x) + \lambda^*_A + y\phi_A\Big]x\phi_B} - \frac{\beta_A}{\phi_B} \\  
-
& \frac{x(\kappa_{Au} - \kappa_{Ad}) + \kappa_{Ad}}{\alpha_A (1-x) + \lambda^*_A + x\phi_A} &= \frac{\Big[y(\kappa_{Bu} - \kappa_{Bd}) + \kappa_{Bd}\Big]\alpha_B (1-y)} {\Big[\alpha_B (1-y) + \lambda^*_B + x\phi_B\Big]y\phi_A} - \frac{\beta_B}{\phi_A}
+
& \frac{x(\kappa_{Au} - \kappa_{Ad}) + \kappa_{Ad}}{\alpha_A (1-x) + \lambda^*_A + x\phi_A} = \frac{\Big[y(\kappa_{Bu} - \kappa_{Bd}) + \kappa_{Bd}\Big]\alpha_B (1-y)} {\Big[\alpha_B (1-y) + \lambda^*_B + x\phi_B\Big]y\phi_A} - \frac{\beta_B}{\phi_A}
\end{align}
\end{align}

Revision as of 21:01, 26 September 2012