Team:Hong Kong-CUHK/PROJECT OVERVIEW

From 2012.igem.org

(Difference between revisions)
Line 10: Line 10:
       <p>&nbsp;</p>
       <p>&nbsp;</p>
       <p class="aloveofthunder" style="line-height:normal; margin-bottom:35px">OVERVIEW</p>
       <p class="aloveofthunder" style="line-height:normal; margin-bottom:35px">OVERVIEW</p>
-
<iframe width="560" height="315" src="http://www.youtube.com/embed/dLCM9FjLXFI" frameborder="0" allowfullscreen></iframe>
+
<p><iframe width="560" height="315" src="http://www.youtube.com/embed/dLCM9FjLXFI" frameborder="0" allowfullscreen></iframe></p>
       <p>This year our team is building up a wavelength-specific light sensor based on rhodopsins. Rhodopsins, being a family of light-sensitive proteins, are utilized by various organisms ranging from archaea to human. Our team determined to continue the exploration of further use of rhodopsin family members, as preceded by our previous success in demonstrating the use of halorhodopsin, a light-driven chloride channel pump, in electricity generation from natural light sources. Here we focused on two sensory rhodopsins (SRs) originated from two archaea, Halobacterium salinarum and Natronomonas pharaonis. These two SRs are activated by blue and orange light respectively and trigger the downstream pathways. By fusing their native transducer proteins to the Escherichia coli counterparts, namely EcTar and EcTsr, chemotactic pathways of E. coli can be hijacked to achieve positive (travels towards light) and negative phototaxis (travels away from light) in response to blue and orange light activation. Desired gene(s) can also be included downstream of SR activation for different purposes. This project provides a novel way to sort bacteria with choices of light sources at the extrema of visible light spectrum, together with expression of desired gene(s) activated by such “phototactic” pathway.</p>
       <p>This year our team is building up a wavelength-specific light sensor based on rhodopsins. Rhodopsins, being a family of light-sensitive proteins, are utilized by various organisms ranging from archaea to human. Our team determined to continue the exploration of further use of rhodopsin family members, as preceded by our previous success in demonstrating the use of halorhodopsin, a light-driven chloride channel pump, in electricity generation from natural light sources. Here we focused on two sensory rhodopsins (SRs) originated from two archaea, Halobacterium salinarum and Natronomonas pharaonis. These two SRs are activated by blue and orange light respectively and trigger the downstream pathways. By fusing their native transducer proteins to the Escherichia coli counterparts, namely EcTar and EcTsr, chemotactic pathways of E. coli can be hijacked to achieve positive (travels towards light) and negative phototaxis (travels away from light) in response to blue and orange light activation. Desired gene(s) can also be included downstream of SR activation for different purposes. This project provides a novel way to sort bacteria with choices of light sources at the extrema of visible light spectrum, together with expression of desired gene(s) activated by such “phototactic” pathway.</p>
<p></p>
<p></p>

Revision as of 17:03, 26 September 2012



 

 

Check out our FACEBOOK page!

 

OVERVIEW

This year our team is building up a wavelength-specific light sensor based on rhodopsins. Rhodopsins, being a family of light-sensitive proteins, are utilized by various organisms ranging from archaea to human. Our team determined to continue the exploration of further use of rhodopsin family members, as preceded by our previous success in demonstrating the use of halorhodopsin, a light-driven chloride channel pump, in electricity generation from natural light sources. Here we focused on two sensory rhodopsins (SRs) originated from two archaea, Halobacterium salinarum and Natronomonas pharaonis. These two SRs are activated by blue and orange light respectively and trigger the downstream pathways. By fusing their native transducer proteins to the Escherichia coli counterparts, namely EcTar and EcTsr, chemotactic pathways of E. coli can be hijacked to achieve positive (travels towards light) and negative phototaxis (travels away from light) in response to blue and orange light activation. Desired gene(s) can also be included downstream of SR activation for different purposes. This project provides a novel way to sort bacteria with choices of light sources at the extrema of visible light spectrum, together with expression of desired gene(s) activated by such “phototactic” pathway.

Project highlights:

-  Wavelength-specific sensing
-  Most visible spectrum coverage
-  Light-induced gene expression
-  Bacterial cell sorting by light

Home   |   Team   |   Project   |   Biobricks   |   Human Practice   |   Safety   |   Documentation   |   Acknowledgement

 

Address: Rm. 184, Science Centre, CUHK
Email: kingchan@cuhk.edu.hk  Tel: (852)-39434420  Fax: (852)-26037246

© Copyright CUHK iGEM Team 2012, All Rights Reserved.