Team:ZJU-China/project.htm

From 2012.igem.org

(Difference between revisions)
Line 620: Line 620:
<p align="justify">&nbsp;</p>
<p align="justify">&nbsp;</p>
<img src="https://static.igem.org/mediawiki/igem.org/d/df/Riboscaffold_fig_13.jpg" width="700px" />
<img src="https://static.igem.org/mediawiki/igem.org/d/df/Riboscaffold_fig_13.jpg" width="700px" />
-
<p align="justify">Fig.13 Synergy Hybrid Microplate Reader controlled experiments. The BL21*DE3 of the E. coli were transformed with figure showing plasmids. (0.5 mM theophylline was adding in strains containing clover 2). </p>
+
<p align="justify">Fig.13 Biotek Synergy H1 Hybrid Reader controlled experiments. The BL21*DE3 of the E. coli were transformed with figure showing plasmids. (0.5 mM theophylline was adding in strains containing clover 2). </p>
<p align="justify">`luminescence \quad efficiency \quad of \quad clover 2=\frac{\frac{FI}{OD(FA+FB+clover 2)}-\frac{FI}{OD(FA+FB)}}{\frac{FI}{OD(FA+FB)}}=\frac{53425-23779}{23779}=125\%`</p>
<p align="justify">`luminescence \quad efficiency \quad of \quad clover 2=\frac{\frac{FI}{OD(FA+FB+clover 2)}-\frac{FI}{OD(FA+FB)}}{\frac{FI}{OD(FA+FB)}}=\frac{53425-23779}{23779}=125\%`</p>
<p align="justify">&nbsp;</p>
<p align="justify">&nbsp;</p>
Line 634: Line 634:
<p align="justify">Theophylline concentration beyond certain extent will be hazardous to cells and how it affects cells depends on strain type. The study by NYMU Taipei 2010 alerted adding more than 4mM of Theophylline would cause E. coli to die. In our experiments, we find that after adding more than 0.5mM, the Theophylline spectrum curve would be invalid. As a result, we pick up data with concentrations below 0.5mM to analyze as the E. coli cell would be unstable or the regulation of the Theophylline aptamer would not be accurate. </p>
<p align="justify">Theophylline concentration beyond certain extent will be hazardous to cells and how it affects cells depends on strain type. The study by NYMU Taipei 2010 alerted adding more than 4mM of Theophylline would cause E. coli to die. In our experiments, we find that after adding more than 0.5mM, the Theophylline spectrum curve would be invalid. As a result, we pick up data with concentrations below 0.5mM to analyze as the E. coli cell would be unstable or the regulation of the Theophylline aptamer would not be accurate. </p>
-
<img src="https://static.igem.org/mediawiki/igem.org/7/78/Riboscaffold_fig_14.jpg" width="700px" />
+
<img src="https://static.igem.org/mediawiki/igem.org/2/20/Screen_Shot_2012-09-26_at_%E4%B8%8B%E5%8D%885.27.52.png" width="700px" />
<p align="justify">Fig.14 origin data of clover 2 regulatory tests. First line of each form is different treatments of Theophylline concentration and data in table cells are fluorescence intensity/ OD.</p>
<p align="justify">Fig.14 origin data of clover 2 regulatory tests. First line of each form is different treatments of Theophylline concentration and data in table cells are fluorescence intensity/ OD.</p>

Revision as of 17:45, 26 September 2012

PROJECT

01 ABSTRACT

02 BACKGROUND

03 S0: BASIC RNA SCAFFOLD

04 S1: RIBOSCAFFOLD

05 S2: SCAFFOLD LIBRARY

06 S3: BIOSYNTHESIS OF IAA

07 PARTS

08 RESULTS

09 APPLICATIONS