Team:ZJU-China/project.htm

From 2012.igem.org

(Difference between revisions)
Line 415: Line 415:
<p>1.4 Protein expression (mRNA) regulation: RNA scaffold as a free molecular in cell can specific bind mRNA and protein. Binding molecular changes the structure of scaffold to release or combine something. So that oncogene and virogene can be found and controlled by the drug from RNA scaffold. The problem of cancer therapeutic drug side effecting may solved by it. </p>
<p>1.4 Protein expression (mRNA) regulation: RNA scaffold as a free molecular in cell can specific bind mRNA and protein. Binding molecular changes the structure of scaffold to release or combine something. So that oncogene and virogene can be found and controlled by the drug from RNA scaffold. The problem of cancer therapeutic drug side effecting may solved by it. </p>
<p>&nbsp;</p>
<p>&nbsp;</p>
-
<p>1.5 Self quenching(Self regulation): Adding self binding site, a balance of “on” and “off” scaffolds is built. The relationship between the binding site size, CG bases, binding form and the rate binding molecular is urgently modeled. Forming dimerization and trimerization, the concentration of working scaffold could be regulated.</p> \
+
<p>1.5 Self quenching(Self regulation): Adding self binding site, a balance of “on” and “off” scaffolds is built. The relationship between the binding site size, CG bases, binding form and the rate binding molecular is urgently modeled. Forming dimerization and trimerization, the concentration of working scaffold could be regulated.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>1.6 Polo-scaffold: Scaffold with intermolecular binding component. These scaffolds bind each other or bind through mediate molecular. And this binding mode has been proved both in vitro and vivo. The aggregation of molecular also makes artificial organelle achievable. (fig4 a.b. Dimerization and trimerization. Protein binding site is sealed off by the scaffolds themselves. Too much scaffold molecular lend to the self regulation. c. Polo-scaffold be made by head-tail binding and d. mediate molecular binding.)</p>
<p>1.6 Polo-scaffold: Scaffold with intermolecular binding component. These scaffolds bind each other or bind through mediate molecular. And this binding mode has been proved both in vitro and vivo. The aggregation of molecular also makes artificial organelle achievable. (fig4 a.b. Dimerization and trimerization. Protein binding site is sealed off by the scaffolds themselves. Too much scaffold molecular lend to the self regulation. c. Polo-scaffold be made by head-tail binding and d. mediate molecular binding.)</p>

Revision as of 14:31, 26 September 2012

PROJECT

01 ABSTRACT

02 BACKGROUND

03 S0: BASIC RNA SCAFFOLD

04 S1: RIBOSCAFFOLD

05 S2: SCAFFOLD LIBRARY

06 S3: BIOSYNTHESIS OF IAA

07 PARTS

08 RESULTS

09 APPLICATIONS