Team:Colombia/Modeling/Scripting
From 2012.igem.org
(Difference between revisions)
(→Scripting) |
|||
Line 2: | Line 2: | ||
== Scripting == | == Scripting == | ||
+ | |||
+ | |||
+ | == RALSTONIA DIFFERENTIAL EQUATION SOLUTION == | ||
+ | |||
+ | |||
+ | These scripts create the differential equations, find the steady state concetrations and then solve them by a 4th order Runge Kutta: | ||
+ | ---- | ||
+ | |||
+ | '''DIFFERANTIAL EQUATIONS DECLARATIONS''' | ||
+ | |||
+ | %THIS CODE CREATE ALL THE DIFFERENTIAL EQUATIONS FOR THE SYSTEM FOR %RASTONIA | ||
+ | function y=ecuaDifR(t,v) | ||
+ | %---------Parameters------% | ||
+ | global alfS %Basal concentration of the sensor phcS | ||
+ | global alfRA %Basal concnetration of the comple pchA-pchR | ||
+ | global alfR %Basal concentration of LuxR | ||
+ | global alfI %Basal concentration of CI | ||
+ | global alfCI %Basal concentration of CI | ||
+ | global alfHA %Basal concnetration of HipA7 | ||
+ | global alfHB %Basal concnetration of HipB | ||
+ | global alfAS %Basal concnetration of Salycilic acid | ||
+ | global gammaS %Degradation of the sensor pchS | ||
+ | global gammaRA %Degradation of the complex pchR-pchA | ||
+ | global gammaR %Degradation of LuxR | ||
+ | global gammaI %Degradation of LuxI | ||
+ | global gammaCI %Degradation of CI | ||
+ | global gammaHA %Degradation of HipA7 | ||
+ | global gammaHB %Degradation of HipB | ||
+ | global gammaAS %Dergradation of Salycilic acid | ||
+ | global mOHS %Kinetic constant for the detection of 3-OH-PAME by the sensor pchS (phosphorylation) | ||
+ | global mSFR %Kinetic constant for the phosphorylation of the complex pchR-pchA by the sensor | ||
+ | global mA %Kinetic constant for the activation of the promoter by the pchA | ||
+ | global mIR %Kinetic constant for the formation of the complex LuxILuxR | ||
+ | global mI %Constant that represent the union of the complex LuxILuxR with the promoter | ||
+ | global mHAHB %Kinetic constant for the inhibition of HipA7 | ||
+ | global betaI %Max production of LuxI | ||
+ | global betaCI %Max production of CI | ||
+ | global betaHB %Max peoduction of HipB | ||
+ | global betaHA %Max production of HipA7 | ||
+ | global betaAS %Max production of Salicylic acid | ||
+ | global kA %Constant k of the hill ecuation for the promoter promoted by pchA | ||
+ | global kIR %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR | ||
+ | global kCI %Constant k of the hill equation for the promoter promoted by CI | ||
+ | global hA %Hill constant for the promoters promoted by pchA | ||
+ | global hIR %Hill constant for the promoter promoted by the complex IR | ||
+ | global hCI %Hill constant fot the promoter CI | ||
+ | global eI %Export factor of LuxI | ||
+ | global jI %Import factor of LuxI | ||
+ | global deltaI %Difusion of LuxI outside the cell | ||
+ | global eAS %Export of Salicylic acid | ||
+ | global numcel %number of cells | ||
+ | |||
+ | if (t<(10) || ((t)>20)) | ||
+ | |||
+ | OH=0; | ||
+ | |||
+ | else | ||
+ | |||
+ | OH=15; | ||
+ | |||
+ | |||
+ | end | ||
+ | |||
+ | %------ Variables%------ | ||
+ | |||
+ | S=v(1); %Cocentration of the sensor pchS the cell | ||
+ | SF=v(2); %Concentration of phosphorylated sensor the cell | ||
+ | RA=v(3); %Concentration of the comple pchR-pchA | ||
+ | A=v(4); %Concentratio of the promoter avtivator pchA | ||
+ | Ii=v(5); %Concentration of LuxI inside the cell | ||
+ | Io=v(6); %Concentration of LuI outsied the cell | ||
+ | IR=v(7); %Concentration of the complex LuxI-LuxR | ||
+ | R=v(8);%Concentration of the protein CI | ||
+ | CI=v(9);%Concentration of HipA7 | ||
+ | HB=v(10);%Concnetratio of HipB | ||
+ | HA=v(11);%Concentration of salicylic acid | ||
+ | AS=v(12); %Concentratio of quitin monomers | ||
+ | |||
+ | %---Equations---% | ||
+ | |||
+ | |||
+ | dS=alfS- gammaS*S - mOHS*OH*S; %Change of the sensor pchS | ||
+ | dSF = mOHS *OH*S - mSFR *SF*RA ; %Change of phosphorylated sensor | ||
+ | dRA=alfRA - gammaRA*RA - mSFR*SF*RA;%Change of the comple pchR-pchA | ||
+ | dA= mSFR*SF*RA-mA*A; %Change of the activator pchA inside the cell | ||
+ | dIi= alfI+ (betaI*(A^hA))/(kA^hA+(A^hA)) -gammaI*Ii +jI*Io- eI*Ii- mIR*Ii*R; %Change of LuxI inside the cell | ||
+ | dIo= numcel*(eI*Ii-jI*Io)-deltaI*Io; %Change of LuxI outside the cell | ||
+ | dIR= mIR*Ii*R - mI*IR; %Change of the complex LuxI luxR | ||
+ | dR= alfR-gammaR*R -mIR*Ii*R +(betaI*(A^hA))/(kA^hA+(A^hA)); %Change of LuxR | ||
+ | dCI= alfCI -gammaCI*CI+ (betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI)) +(betaCI*(IR^hIR))/(kIR^hIR+(IR^hIR));%Change of CI | ||
+ | dHB=alfHB-gammaHB*HB+(betaHB*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaHB*(IR^hIR))/(kIR^hIR+(IR^hIR))-mHAHB*HA^2*HB^2; %Chanche of HipB | ||
+ | dHA=alfHA-gammaHA*HA+ (betaHA*(CI^hCI))/(kCI^hCI+(CI^hCI))-mHAHB*HA^2*HB^2; %Change of HipA7 | ||
+ | dAS=alfAS-gammaAS*AS +(betaAS*(CI^hCI))/(kCI^hCI+(CI^hCI))-eAS*AS+(betaAS*(IR^hIR))/(kIR^hIR+(IR^hIR)); %Change of Salicylic acid | ||
+ | y1(1)=dS; | ||
+ | y1(2)=dSF; | ||
+ | y1(3)=dRA; | ||
+ | y1(4)=dA; | ||
+ | y1(5)=dIi; | ||
+ | y1(6)=dIo; | ||
+ | y1(7)=dIR; | ||
+ | y1(8)=dR; | ||
+ | y1(9)=dCI; | ||
+ | y1(10)=dHB; | ||
+ | y1(11)=dHA; | ||
+ | y1(12)=dAS; | ||
+ | y=y1'; | ||
+ | |||
+ | end | ||
+ | |||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | '''RUNGE KUTTA''' | ||
+ | |||
+ | %FILE THAT SOLVES THE DIFFERENTIAL EQUATION AND GRAPHS THEM | ||
+ | alfS=0.9; %Basal concentration of the sensor pchS | ||
+ | alfRA=0.9; %Basal concnetration of the complez pchA-pchR | ||
+ | alfR=0.6; %Basal concentration of LuxR | ||
+ | alfI=0.4; %Basal concentration of LuxI | ||
+ | alfCI=0.5; %Basal concentration of CI | ||
+ | alfHA=1; %Basal concnetration of HipA7 | ||
+ | alfHB=0.4; %Basal concnetration of HipB | ||
+ | alfAS=0.4; %Basal concnetration of Salycilic acid | ||
+ | gammaS=1; %Degradation of Chitinase inside the cell | ||
+ | gammaRA=1; %Degradation of chitoporin | ||
+ | gammaR=1; %Degradation of LuxR | ||
+ | gammaI=1; %Degradation of LuxI | ||
+ | gammaCI=1; %Degradation of CI | ||
+ | gammaHA=1; %Degradation of HipA7 | ||
+ | gammaHB=4; %Degradation of HipB | ||
+ | gammaAS=1; %Dergradation of Salycilic acid | ||
+ | mOHS=4; %Kinetic constant for the formation of the phoshorilation of the sensor | ||
+ | mSFR=2.6; %Kinetic constant of the reaction of the phosphorilarion of the comple R | ||
+ | mA=3.5; %Kinetic constant for the activation by A | ||
+ | mIR=3; %Kinetic constant for the formation of the complex LuxILuxR | ||
+ | mI=3; %Constant that represent the union of the complex LuxILuxR with the promoter | ||
+ | mHAHB=12; %Kinetic constant for the inhibition of HipA7 | ||
+ | betaI=10; %Max production of LuxI | ||
+ | betaCI=9.96; %Max production of CI | ||
+ | betaHB=9.95; %Max production of HipB | ||
+ | betaHA=10; %Max production of HipA7 | ||
+ | betaAS=11.2; %Max production of Salicylic acid | ||
+ | kA=0.1; %Constant k of the hill ecuation for the promoter promoted by S | ||
+ | kIR=0.39; %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR | ||
+ | kCI=0.055; %Cosntant k of the hill equation for the promoter promoted by CI | ||
+ | hA=1.2; %Hill constant for the promoters promoted by S | ||
+ | hIR=3.4; %Hill constant for the promoter promoted by the complex IR | ||
+ | hCI=2.3; %Hill constant fot the promoter CI | ||
+ | eI=0.5; %Export factor of LuxI | ||
+ | jI=0.8; %Import factor of LuxI | ||
+ | deltaI=0.2;%Difusion of LuxI outside the cell | ||
+ | eAS=0.8; | ||
+ | numcel=1; %number of cells | ||
+ | %----% | ||
+ | |||
+ | h=100; %Tiempo maximo | ||
+ | |||
+ | m=0.01; %Longitud de paso [s] | ||
+ | |||
+ | t=0:m:h; %Vector tiempo | ||
+ | |||
+ | xi=[1,1,1,1,1,1,1,1,1,1,1,1]; | ||
+ | |||
+ | y=fsolve(@CondInR,xi); | ||
+ | |||
+ | conInd=y; | ||
+ | |||
+ | l=(0:m:h)'; %Vector de tiempo | ||
+ | |||
+ | x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia | ||
+ | %la variable y en las filas varia el tiempo | ||
+ | |||
+ | OH=zeros(1,length(l)); | ||
+ | |||
+ | x(1,:)=conInd; | ||
+ | |||
+ | for k=1:length(l)-1 | ||
+ | |||
+ | xk=x(k,:); %Captura de la ultima posicion de la matirz, es decir, los | ||
+ | %valores actuales de las variables | ||
+ | |||
+ | k1=ecuaDifR(l(k),xk); %Primera pendiente del metodo de RK4 | ||
+ | k2=ecuaDifR(l(k)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 | ||
+ | k3=ecuaDifR(l(k)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 | ||
+ | k4=ecuaDifR(l(k)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 | ||
+ | |||
+ | xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las | ||
+ | %variables | ||
+ | |||
+ | %xk1=xk+m*ecuaDif(l(k),xk)'; %Method of Newton | ||
+ | |||
+ | xk2=zeros(1,length(xk1)); | ||
+ | |||
+ | |||
+ | for p=1:length(xk1) | ||
+ | |||
+ | if(xk1(p)<0.00000001) | ||
+ | |||
+ | xk2(p)=0; | ||
+ | else | ||
+ | |||
+ | xk2(p)=xk1(p); | ||
+ | end | ||
+ | |||
+ | end | ||
+ | |||
+ | |||
+ | x(k+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz | ||
+ | |||
+ | |||
+ | |||
+ | end | ||
+ | |||
+ | for j=1:length(l) | ||
+ | |||
+ | if (l(j)<(10) || l(j)>(20)) | ||
+ | |||
+ | OH(j)=0; | ||
+ | |||
+ | else | ||
+ | |||
+ | OH(j)=15; | ||
+ | |||
+ | |||
+ | end | ||
+ | |||
+ | |||
+ | end | ||
+ | |||
+ | S=x(:,1); | ||
+ | SF=x(:,2); | ||
+ | RA=x(:,3); | ||
+ | A=x(:,4); | ||
+ | Ii=x(:,5); | ||
+ | Io=x(:,6); | ||
+ | IR=x(:,7); | ||
+ | R=x(:,8); | ||
+ | CI=x(:,9); | ||
+ | HB=x(:,10); | ||
+ | HA=x(:,11); | ||
+ | AS=x(:,12); | ||
+ | |||
+ | figure(1) | ||
+ | plot(l,S,l,SF) | ||
+ | legend('Sensor (pchS)',' Phosporilated pchS') | ||
+ | xlabel('Time') | ||
+ | ylabel('Concetratio (micromolar)') | ||
+ | title('Response of Sensor pchS') | ||
+ | figure(5) | ||
+ | plot(l,RA,l,A) | ||
+ | legend('Complex pchR-pchA','Activator pchA') | ||
+ | xlabel('Time') | ||
+ | ylabel('Concetration (micromolar)') | ||
+ | title('Activator response') | ||
+ | figure(2) | ||
+ | plot (l,R,l,Ii,l,Io,l,IR) | ||
+ | legend('LuxR','LuxI nside the cell','LuxI outside the cell','Complex(Lux-LuxR)') | ||
+ | xlabel('Time') | ||
+ | ylabel('Concetration (micromolar)') | ||
+ | title('LuxI-LuxR system response') | ||
+ | figure(3) | ||
+ | plot (l,HA,l,HB) | ||
+ | legend('Toxin HipA7','Antitoxin HipB') | ||
+ | xlabel('Time') | ||
+ | ylabel('Concetration (micromolar)') | ||
+ | title('Toxin-Antitoxin module') | ||
+ | figure(4) | ||
+ | plot (l,OH,l,AS,l,CI) | ||
+ | legend('3-OH-PAME','Salicylic acid','CI') | ||
+ | xlabel('Time') | ||
+ | ylabel('Concetration (micromolar)') | ||
+ | title('CI and Salicylic Acid response') | ||
+ | |||
+ | |||
+ | |||
+ | ---- |
Revision as of 13:09, 26 September 2012
Template:Https://2012.igem.org/User:Tabima
Scripting
RALSTONIA DIFFERENTIAL EQUATION SOLUTION
These scripts create the differential equations, find the steady state concetrations and then solve them by a 4th order Runge Kutta:
DIFFERANTIAL EQUATIONS DECLARATIONS
%THIS CODE CREATE ALL THE DIFFERENTIAL EQUATIONS FOR THE SYSTEM FOR %RASTONIA
function y=ecuaDifR(t,v) %---------Parameters------% global alfS %Basal concentration of the sensor phcS global alfRA %Basal concnetration of the comple pchA-pchR global alfR %Basal concentration of LuxR global alfI %Basal concentration of CI global alfCI %Basal concentration of CI global alfHA %Basal concnetration of HipA7 global alfHB %Basal concnetration of HipB global alfAS %Basal concnetration of Salycilic acid global gammaS %Degradation of the sensor pchS global gammaRA %Degradation of the complex pchR-pchA global gammaR %Degradation of LuxR global gammaI %Degradation of LuxI global gammaCI %Degradation of CI global gammaHA %Degradation of HipA7 global gammaHB %Degradation of HipB global gammaAS %Dergradation of Salycilic acid global mOHS %Kinetic constant for the detection of 3-OH-PAME by the sensor pchS (phosphorylation) global mSFR %Kinetic constant for the phosphorylation of the complex pchR-pchA by the sensor global mA %Kinetic constant for the activation of the promoter by the pchA global mIR %Kinetic constant for the formation of the complex LuxILuxR global mI %Constant that represent the union of the complex LuxILuxR with the promoter global mHAHB %Kinetic constant for the inhibition of HipA7 global betaI %Max production of LuxI global betaCI %Max production of CI global betaHB %Max peoduction of HipB global betaHA %Max production of HipA7 global betaAS %Max production of Salicylic acid global kA %Constant k of the hill ecuation for the promoter promoted by pchA global kIR %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR global kCI %Constant k of the hill equation for the promoter promoted by CI global hA %Hill constant for the promoters promoted by pchA global hIR %Hill constant for the promoter promoted by the complex IR global hCI %Hill constant fot the promoter CI global eI %Export factor of LuxI global jI %Import factor of LuxI global deltaI %Difusion of LuxI outside the cell global eAS %Export of Salicylic acid global numcel %number of cells if (t<(10) || ((t)>20)) OH=0; else OH=15; end
%------ Variables%------ S=v(1); %Cocentration of the sensor pchS the cell SF=v(2); %Concentration of phosphorylated sensor the cell RA=v(3); %Concentration of the comple pchR-pchA A=v(4); %Concentratio of the promoter avtivator pchA Ii=v(5); %Concentration of LuxI inside the cell Io=v(6); %Concentration of LuI outsied the cell IR=v(7); %Concentration of the complex LuxI-LuxR R=v(8);%Concentration of the protein CI CI=v(9);%Concentration of HipA7 HB=v(10);%Concnetratio of HipB HA=v(11);%Concentration of salicylic acid AS=v(12); %Concentratio of quitin monomers %---Equations---% dS=alfS- gammaS*S - mOHS*OH*S; %Change of the sensor pchS dSF = mOHS *OH*S - mSFR *SF*RA ; %Change of phosphorylated sensor dRA=alfRA - gammaRA*RA - mSFR*SF*RA;%Change of the comple pchR-pchA dA= mSFR*SF*RA-mA*A; %Change of the activator pchA inside the cell dIi= alfI+ (betaI*(A^hA))/(kA^hA+(A^hA)) -gammaI*Ii +jI*Io- eI*Ii- mIR*Ii*R; %Change of LuxI inside the cell dIo= numcel*(eI*Ii-jI*Io)-deltaI*Io; %Change of LuxI outside the cell dIR= mIR*Ii*R - mI*IR; %Change of the complex LuxI luxR dR= alfR-gammaR*R -mIR*Ii*R +(betaI*(A^hA))/(kA^hA+(A^hA)); %Change of LuxR dCI= alfCI -gammaCI*CI+ (betaCI*(CI^hCI))/(kCI^hCI+(CI^hCI)) +(betaCI*(IR^hIR))/(kIR^hIR+(IR^hIR));%Change of CI dHB=alfHB-gammaHB*HB+(betaHB*(CI^hCI))/(kCI^hCI+(CI^hCI))+(betaHB*(IR^hIR))/(kIR^hIR+(IR^hIR))-mHAHB*HA^2*HB^2; %Chanche of HipB dHA=alfHA-gammaHA*HA+ (betaHA*(CI^hCI))/(kCI^hCI+(CI^hCI))-mHAHB*HA^2*HB^2; %Change of HipA7 dAS=alfAS-gammaAS*AS +(betaAS*(CI^hCI))/(kCI^hCI+(CI^hCI))-eAS*AS+(betaAS*(IR^hIR))/(kIR^hIR+(IR^hIR)); %Change of Salicylic acid y1(1)=dS; y1(2)=dSF; y1(3)=dRA; y1(4)=dA; y1(5)=dIi; y1(6)=dIo; y1(7)=dIR; y1(8)=dR; y1(9)=dCI; y1(10)=dHB; y1(11)=dHA; y1(12)=dAS; y=y1'; end
RUNGE KUTTA
%FILE THAT SOLVES THE DIFFERENTIAL EQUATION AND GRAPHS THEM alfS=0.9; %Basal concentration of the sensor pchS alfRA=0.9; %Basal concnetration of the complez pchA-pchR alfR=0.6; %Basal concentration of LuxR alfI=0.4; %Basal concentration of LuxI alfCI=0.5; %Basal concentration of CI alfHA=1; %Basal concnetration of HipA7 alfHB=0.4; %Basal concnetration of HipB alfAS=0.4; %Basal concnetration of Salycilic acid gammaS=1; %Degradation of Chitinase inside the cell gammaRA=1; %Degradation of chitoporin gammaR=1; %Degradation of LuxR gammaI=1; %Degradation of LuxI gammaCI=1; %Degradation of CI gammaHA=1; %Degradation of HipA7 gammaHB=4; %Degradation of HipB gammaAS=1; %Dergradation of Salycilic acid mOHS=4; %Kinetic constant for the formation of the phoshorilation of the sensor mSFR=2.6; %Kinetic constant of the reaction of the phosphorilarion of the comple R mA=3.5; %Kinetic constant for the activation by A mIR=3; %Kinetic constant for the formation of the complex LuxILuxR mI=3; %Constant that represent the union of the complex LuxILuxR with the promoter mHAHB=12; %Kinetic constant for the inhibition of HipA7 betaI=10; %Max production of LuxI betaCI=9.96; %Max production of CI betaHB=9.95; %Max production of HipB betaHA=10; %Max production of HipA7 betaAS=11.2; %Max production of Salicylic acid kA=0.1; %Constant k of the hill ecuation for the promoter promoted by S kIR=0.39; %Constant k of the hill equiation for the promorer prmoted by the complex luxIluxR kCI=0.055; %Cosntant k of the hill equation for the promoter promoted by CI hA=1.2; %Hill constant for the promoters promoted by S hIR=3.4; %Hill constant for the promoter promoted by the complex IR hCI=2.3; %Hill constant fot the promoter CI eI=0.5; %Export factor of LuxI jI=0.8; %Import factor of LuxI deltaI=0.2;%Difusion of LuxI outside the cell eAS=0.8; numcel=1; %number of cells %----%
h=100; %Tiempo maximo m=0.01; %Longitud de paso [s] t=0:m:h; %Vector tiempo xi=[1,1,1,1,1,1,1,1,1,1,1,1]; y=fsolve(@CondInR,xi);
conInd=y; l=(0:m:h)'; %Vector de tiempo x=zeros(length(l),length(conInd)); %Matriz de variables, en las columnas varia %la variable y en las filas varia el tiempo OH=zeros(1,length(l)); x(1,:)=conInd; for k=1:length(l)-1 xk=x(k,:); %Captura de la ultima posicion de la matirz, es decir, los %valores actuales de las variables k1=ecuaDifR(l(k),xk); %Primera pendiente del metodo de RK4 k2=ecuaDifR(l(k)+m/2,xk+(m/2*k1)'); %Segunda pendiente del metodo de RK4 k3=ecuaDifR(l(k)+m/2,xk+(m/2*k2)'); %Tercera pendiente del metodo de RK4 k4=ecuaDifR(l(k)+m,xk+(m*k3)'); %Cuarta pendiente del metodo de RK4 xk1=xk+m/6*(k1+2*k2+2*k3+k4)'; %Calculo de nuevos valores para las %variables %xk1=xk+m*ecuaDif(l(k),xk)'; %Method of Newton xk2=zeros(1,length(xk1)); for p=1:length(xk1) if(xk1(p)<0.00000001) xk2(p)=0; else xk2(p)=xk1(p); end end x(k+1,:)=xk2; %Actualizacion del nuevo vector de variables en la matriz end
for j=1:length(l) if (l(j)<(10) || l(j)>(20)) OH(j)=0; else OH(j)=15; end end
S=x(:,1); SF=x(:,2); RA=x(:,3); A=x(:,4); Ii=x(:,5); Io=x(:,6); IR=x(:,7); R=x(:,8); CI=x(:,9); HB=x(:,10); HA=x(:,11); AS=x(:,12);
figure(1) plot(l,S,l,SF) legend('Sensor (pchS)',' Phosporilated pchS') xlabel('Time') ylabel('Concetratio (micromolar)') title('Response of Sensor pchS') figure(5) plot(l,RA,l,A) legend('Complex pchR-pchA','Activator pchA') xlabel('Time') ylabel('Concetration (micromolar)') title('Activator response') figure(2) plot (l,R,l,Ii,l,Io,l,IR) legend('LuxR','LuxI nside the cell','LuxI outside the cell','Complex(Lux-LuxR)') xlabel('Time') ylabel('Concetration (micromolar)') title('LuxI-LuxR system response') figure(3) plot (l,HA,l,HB) legend('Toxin HipA7','Antitoxin HipB') xlabel('Time') ylabel('Concetration (micromolar)') title('Toxin-Antitoxin module') figure(4) plot (l,OH,l,AS,l,CI) legend('3-OH-PAME','Salicylic acid','CI') xlabel('Time') ylabel('Concetration (micromolar)') title('CI and Salicylic Acid response')