Team:LMU-Munich/Spore Coat Proteins

From 2012.igem.org

(Difference between revisions)
Line 16: Line 16:
-
{| style="color:black;" cellpadding="3" width="70%" cellspacing="0" border="0" align="center" style="text-align:left;"
+
{| style="color:black;" cellpadding="3" width="100%" cellspacing="0" border="0" align="center" style="text-align:left;"
| style="width: 70%;background-color: #EBFCE4;" |
| style="width: 70%;background-color: #EBFCE4;" |
{|
{|
-
|[[File:Imamura, 2011 & McKenney, 2010.png|Protein distribution in spore coat of ''Bacillus subtilis''|500px|center]]
+
|[[File:Imamura, 2011 & McKenney, 2010.png|Protein distribution in spore coat of ''Bacillus subtilis''|610px|center]]
|-
|-
| style="width: 70%;background-color: #EBFCE4;" |
| style="width: 70%;background-color: #EBFCE4;" |
Line 32: Line 32:
<p align="justify">The gene ''cgeA'' is located in the ''cgeABCDE'' cluster and is regulated by its own promoter P<sub>''cgeA''</sub>. The cluster ''cotVWXYZ'' contains the gene ''cotZ'' which is cotranscribed with ''cotY'' regulated by the promoter P<sub>''cotYZ''</sub>. Another promoter of this cluster P<sub>''cotV''</sub> is responsible for the transcription of the other three genes. Those three promoters were [https://2012.igem.org/Team:LMU-Munich/Data/crustpromoters evaluated] with ''lux'' reporter genes to get an impression of their time of activation and their strength (see for more details [http://partsregistry.org/Part:BBa_K823025 pSB<sub>''Bs''</sub>3C-''lux''ABCDE]) so they could be used for expression of spore crust fusion proteins.</p>  
<p align="justify">The gene ''cgeA'' is located in the ''cgeABCDE'' cluster and is regulated by its own promoter P<sub>''cgeA''</sub>. The cluster ''cotVWXYZ'' contains the gene ''cotZ'' which is cotranscribed with ''cotY'' regulated by the promoter P<sub>''cotYZ''</sub>. Another promoter of this cluster P<sub>''cotV''</sub> is responsible for the transcription of the other three genes. Those three promoters were [https://2012.igem.org/Team:LMU-Munich/Data/crustpromoters evaluated] with ''lux'' reporter genes to get an impression of their time of activation and their strength (see for more details [http://partsregistry.org/Part:BBa_K823025 pSB<sub>''Bs''</sub>3C-''lux''ABCDE]) so they could be used for expression of spore crust fusion proteins.</p>  
-
[[File:Example.jpg operons]]
 
-
<p align="justify">The first step was to fuse [http://partsregistry.org/Part:BBa_K823039 ''gfp''] to ''cgeA'' and [http://partsregistry.org/wiki/index.php?title=Part:BBa_K823031 ''cotZ''] as a proof of principle. This way we would determine if it is possible to display proteins on the spore crust and if their expression has any effect on spore formation.</p>  
+
{| style="color:black;" cellpadding="3" width="100%" cellspacing="0" border="0" align="center" style="text-align:left;"
 +
| style="width: 100%;background-color: #EBFCE4;" |
 +
{|
 +
|[[File:Operons.png|610px|center]]
 +
|-
 +
| style="width: 70%;background-color: #EBFCE4;" |
 +
{| style="color:black;" cellpadding="0" width="70%" cellspacing="0" border="0" align="center" style="text-align:center;"
 +
|style="width: 70%;background-color: #EBFCE4;" |
 +
<font color="#000000"; size="2">Gene clusters of ''cotZ'' and ''cgeA''</font>
 +
|}
 +
|}
 +
|}
-
'''DATA'''::All three genes were brought into Freiburg Standard whereas we created to different versions of the crust proteins. The restriction site NgoMIV was inserted just after the startcodon of the gene of the crust protein. Since this restriction site adds six additional basepairs the resulting gene is two codons longer [http://partsregistry.org/wiki/index.php?title=Part:BBa_K823032 CotZ]. It is not know if this insertion has any effect on protein expression that is why we created an additional version in which we deleted the following six basepairs, [http://partsregistry.org/wiki/index.php?title=Part:BBa_K823031 CotZ-2aa].
+
<p align="justify">The first step was to fuse [http://partsregistry.org/Part:BBa_K823039 ''gfp''] to ''cgeA'' and [http://partsregistry.org/wiki/index.php?title=Part:BBa_K823031 ''cotZ''] as a proof of principle. This way we would determine if it is possible to display proteins on the spore crust and if their expression has any effect on spore formation.</p>
   
   
Line 46: Line 56:
-
{| style="color:black;" cellpadding="3" width="70%" cellspacing="0" border="0" align="center" style="text-align:left;"
+
{| style="color:black;" cellpadding="3" width="100%" cellspacing="0" border="0" align="center" style="text-align:left;"
| style="width: 70%;background-color: #EBFCE4;" |
| style="width: 70%;background-color: #EBFCE4;" |
{|
{|
-
|[[File:Final construct-2.png|Scheme of variants of the final fusion constructs Promoter-Gene-GFP-Terminator|610px]]
+
|[[File:Final construct.png|610px|center]]
|}
|}
|-
|-
Line 55: Line 65:
{| style="color:black;" cellpadding="0" width="100%" cellspacing="0" border="0" align="center" style="text-align:center;"
{| style="color:black;" cellpadding="0" width="100%" cellspacing="0" border="0" align="center" style="text-align:center;"
|style="width: 70%;background-color: #EBFCE4;" |
|style="width: 70%;background-color: #EBFCE4;" |
-
<font color="#000000">Scheme of variants of the final fusion constructs Promoter-Crust Protein-GFP-Terminator</font>
+
<font color="#000000"; size="2">Section of the genome of ''B. subtilis'' with the various integrated constructs.</font>
|}
|}
|}
|}
 +
<p align="justify">As we are working with B. subtilis spores, we needed to clone our final constructs into an empty Bacillus vector, so that they could get integrated into the genome of ''B. subtilis'' after transformation. Thus we picked the empty vector pSB<sub>BS</sub>1C from our '''''Bacillus''B'''io'''B'''rick'''B'''ox,  for the ''cotZ'' constructs. This vector integrates into the ''amyE'' locus in the ''B. subtilis'' genome. Therefore we checked the integration of our construct via a starch test.  The clones with the right integrated device have then been chosen for further analysis. In oder to express both crust protein constructs in one strain the ''cgeA'' fusion proteins had to be cloned into one of the other empty vectors. Unfortunately for unknown reasons, the cloning of the constructs with ''cgeA'' into this vector have been unsuccessful so far.</p>  
<p align="justify">As we are working with B. subtilis spores, we needed to clone our final constructs into an empty Bacillus vector, so that they could get integrated into the genome of ''B. subtilis'' after transformation. Thus we picked the empty vector pSB<sub>BS</sub>1C from our '''''Bacillus''B'''io'''B'''rick'''B'''ox,  for the ''cotZ'' constructs. This vector integrates into the ''amyE'' locus in the ''B. subtilis'' genome. Therefore we checked the integration of our construct via a starch test.  The clones with the right integrated device have then been chosen for further analysis. In oder to express both crust protein constructs in one strain the ''cgeA'' fusion proteins had to be cloned into one of the other empty vectors. Unfortunately for unknown reasons, the cloning of the constructs with ''cgeA'' into this vector have been unsuccessful so far.</p>  

Revision as of 13:38, 26 September 2012

iGEM Ludwig-Maximilians-Universität München Beadzillus

Team-LMU eppis.resized.jpg

The LMU-Munich team is exuberantly happy about the great success at the World Championship Jamboree in Boston. Our project Beadzillus finished 4th and won the prize for the "Best Wiki" (with Slovenia) and "Best New Application Project".

IGEM HQ LMU prize.jpg

[ more news ]

Sporenfreunde