Team:USP-UNESP-Brazil/Associative Memory/Background

From 2012.igem.org

(Difference between revisions)
(Hopfield Associative Memory Networks)
(Biological Mechanism)
Line 40: Line 40:
===Biological Mechanism===
===Biological Mechanism===
-
In a neuronal communication system, the cells of the network occupy a specific place of space and the information is addressed through a direct physical contact - the neuron axonal projections. To replicate this in a cell system that moves constantly it would be also necessary some way to specifically address the information flow between the system’s components, otherwise it will not be possible to attach a meaning to a communication without specificity.Furthermore, is possible to verify the neuronal activity[1.4] because of the fixed spatial position of the cells, which conserves the signal observation of a neuron in a specific local.
+
In a neuronal communication system, the cells of the network occupy a specific place of space and the information is addressed through a direct physical contact - the neuron axonal projections. To replicate this in a cell system that moves constantly it would be also necessary some way to specifically address the information flow between the system’s components, otherwise it will not be possible to attach a meaning to a communication without specificity. Furthermore, is possible to verify the neuronal activity [1.4] because of the fixed spatial position of the cells, which conserves the signal observation of a neuron in a specific local.
-
It’s much more complicated to observe the dynamics of this cell communicating system using bacteria. Unlike static single cells communicating with each other (see figure 3), we aim to observe the communication between many genetically distinct bacterial populations. And these cells don’t stop moving! In other words: there’s no specific point in space which can be always observed the same phenomenon.
+
It is much more complicated to observe the dynamics of this cell communicating system using bacteria. Unlike static single cells communicating with each other (see figure 3), we aim to observe the communication between many genetically distinct bacterial populations. And these cells don’t stop moving! In other words: there’s no specific point in space which can be always observed the same phenomenon.
Line 52: Line 52:
Therefore, the influence of inhibition or activation that one point of the network can have under another in the bacterial system would be given by the particular meaning of each signal for each cell population – this point is where the memory programming of the system occurs which is the determination, for each cell population, the meaning of each communication signal of every point of the network.
Therefore, the influence of inhibition or activation that one point of the network can have under another in the bacterial system would be given by the particular meaning of each signal for each cell population – this point is where the memory programming of the system occurs which is the determination, for each cell population, the meaning of each communication signal of every point of the network.
-
Then, to solve the problems of the visualization of the signals’activation, we planned the construction of a device to make 9 E.coli populations to communicate with each other but still keep their position in space. As an improvement to the example in figure 1, the device enables the communication not only of neighbors but also of all the populations, inhibiting or activating them according to the memory implanted to the network. This way, comparing to the communication between neighbors and of the whole system itself, generates a bigger resolution of the output in response to a similar input, once each position has better information about the pattern of activity of all the other positions. Figure 4 shows a construction of the system that can enable an efficient communication between the populations of different positions of the network, even if it is physically separating them.
+
Then, to solve the problems of the visualization of the signals’ activation, we planned the construction of a device to make 9 E.coli populations to communicate with each other but still keep their position in space. As an improvement to the example in figure 1, the device enables the communication not only of neighbors but also of all the populations, inhibiting or activating them according to the memory implanted to the network. This way, comparing to the communication between neighbors and of the whole system itself, generates a bigger resolution of the output in response to a similar input, once each position has better information about the pattern of activity of all the other positions. Figure 4 shows a construction of the system that can enable an efficient communication between the populations of different positions of the network, even if it is physically separating them.
[[File:Physicalsystemforbacterialnetwork.png|center|500px|caption|]]
[[File:Physicalsystemforbacterialnetwork.png|center|500px|caption|]]
Line 63: Line 63:
Despite the solution we found to the specificity of the communication, another problem appears when we try to genetically build the bacterial populations: there are not enough quorum sensing systems to create 9 bacterial populations with different ones. In the Registry of Parts there are 4 quorum sensing systems well characterized, and there is a strong activation crosstalk between two of them (Las and Rhl), this fact prevent us from using them, therefore, we end up with 3 systems of quorum sensing that can be used.
Despite the solution we found to the specificity of the communication, another problem appears when we try to genetically build the bacterial populations: there are not enough quorum sensing systems to create 9 bacterial populations with different ones. In the Registry of Parts there are 4 quorum sensing systems well characterized, and there is a strong activation crosstalk between two of them (Las and Rhl), this fact prevent us from using them, therefore, we end up with 3 systems of quorum sensing that can be used.
-
Initially,we intended,– only as a concept proof - to create a network associative memory for discrimination activation patterns between the "L" and "T", similar to the one presented in Figure 2. As these memories require that all points of the network have a communication singular, we searched for a case in particular that demanded that memories would require only a small number of quorum sensing substances.
+
Initially, we intended,– only as a concept proof - to create a network associative memory for discrimination activation patterns between the "L" and "T", similar to the one presented in Figure 2. As these memories require that all points of the network have a communication singular, we searched for a case in particular that demanded that memories would require only a small number of quorum sensing substances.
Asymmetrical memory would be the answer: since only two quorum sensing systems are necessary to accomplish the same recognition memory task as an incomplete memory, similarly to the example showed in Figure 2, the "X" and "O" memories. In these patterns there is no intersection between "letter X" and letter"O”, which greatly simplifies the configuration of communication weights between positions (see Figure 5). Because each position of the “X” inhibits all positions of “O” and activates all positions of its own pattern (and vise-versa), there is no need to distinguish between the kind of signal (quorum sense substance) that each position of the “X” emits. The same works for all positions of the “O” pattern. Still, the positions of each pattern can be programmed with the same genetic code, which allow us to use only two systems of quorum sensing to create a network of associative memory that is capable of differentiate between two memories, given a particular input that would be interpreted as an incomplete memory.
Asymmetrical memory would be the answer: since only two quorum sensing systems are necessary to accomplish the same recognition memory task as an incomplete memory, similarly to the example showed in Figure 2, the "X" and "O" memories. In these patterns there is no intersection between "letter X" and letter"O”, which greatly simplifies the configuration of communication weights between positions (see Figure 5). Because each position of the “X” inhibits all positions of “O” and activates all positions of its own pattern (and vise-versa), there is no need to distinguish between the kind of signal (quorum sense substance) that each position of the “X” emits. The same works for all positions of the “O” pattern. Still, the positions of each pattern can be programmed with the same genetic code, which allow us to use only two systems of quorum sensing to create a network of associative memory that is capable of differentiate between two memories, given a particular input that would be interpreted as an incomplete memory.

Revision as of 23:44, 25 September 2012