Team:SEU O China/Model

From 2012.igem.org

(Difference between revisions)
Line 67: Line 67:
Each minimum spatial unit in this cellular automata model is able to hold up at most one cell. Cells can be divided into two types, normal cells(marked by green) and special cells(marked by red). Red cells are transferred from green cells by the trigger of light. The type of cells is denoted by ‘C’ as follows:
Each minimum spatial unit in this cellular automata model is able to hold up at most one cell. Cells can be divided into two types, normal cells(marked by green) and special cells(marked by red). Red cells are transferred from green cells by the trigger of light. The type of cells is denoted by ‘C’ as follows:
-
[[File:Seuofun1.gif]]
+
[[File:Seuofun1.gif|center]]
 +
 
 +
‘n’ represents the n th period, ‘(i, j)’ represents the location of the cell. Same below
 +
Red cells emit AHL at the rate of ‘q’ in every period.
 +
 
 +
 
 +
b) Cell Division and Cellular States
 +
 
 +
Both kinds of cells are likely to divide. A mature cell possesses a division probability of Pdiv  every time unit and gets two green cells after division. The newly generated cell would grow closely to the original cell and would emerge at the eight neighboring positions with equal probability. If the eight neighboring positions had been occupied, then the original cell would not be able to divide.
 +
 
 +
Consider the realistic condition where continuous cell division is impossible, so we use Φ to denote cellular states. At the very beginning Φ=1; Then with the cells growing, Φ=Φ+1 with every period; When Φ=τ, the cell would be mature enough to divide with a division probability of Pdiv  during every period; After every division, the Φ(n;i,j) of the original and new cells would both change into:
 +
 
 +
[[File:Seuofun2.gif|center]]
 +
 
 +
 
 +
 
 +
 
<html>
<html>

Revision as of 14:08, 25 September 2012

header1
header2



Modeling






Simulation

  • Introduction
  • Light Induce
  • Auto-differentiation

Data Process

  • Parameter Estimates
  • Image Process

System Simulation


Introduction

In order to verify the availability and probable effect of our design scheme, simulation mathematical models based on Cellular Automata technique have been conducted.

In catering to our past experiment scheme, we have constructed two models as follows:

  • Light Sensing Model: use light to trigger the asymmetry process of the colony;
  • Movement Model: use more complicated pathways to induce the break of symmetry.

A cellular automaton is in nature a finite-state machine in discrete time as well as space studied in computability theory,mathematics, physics, complexity science, theoretical biology and microstructure modeling.

This model provides a significant reference to the appraise of realistic experiments by simulating the whole pattern changing process, which consists of division, movement, death and some relevant ones.

Light Induced Model


Micro Model

To display the simulation results directly, we have constructed a micro model based on cellular automata. Each minimum spatial unit is able to hold up at most one cell, which can be characterized by a cellular automaton; Meanwhile, another property that wonders in every minimum spatial unit is the density of AHL, which relies on the density diffusion equation. The detailed cellular automata rules would be as follows.


a) Cell types

Each minimum spatial unit in this cellular automata model is able to hold up at most one cell. Cells can be divided into two types, normal cells(marked by green) and special cells(marked by red). Red cells are transferred from green cells by the trigger of light. The type of cells is denoted by ‘C’ as follows:

‘n’ represents the n th period, ‘(i, j)’ represents the location of the cell. Same below Red cells emit AHL at the rate of ‘q’ in every period.


b) Cell Division and Cellular States

Both kinds of cells are likely to divide. A mature cell possesses a division probability of Pdiv every time unit and gets two green cells after division. The newly generated cell would grow closely to the original cell and would emerge at the eight neighboring positions with equal probability. If the eight neighboring positions had been occupied, then the original cell would not be able to divide.

Consider the realistic condition where continuous cell division is impossible, so we use Φ to denote cellular states. At the very beginning Φ=1; Then with the cells growing, Φ=Φ+1 with every period; When Φ=τ, the cell would be mature enough to divide with a division probability of Pdiv during every period; After every division, the Φ(n;i,j) of the original and new cells would both change into:



Division Inhibition