Team:Amsterdam/project/applications/main applications

From 2012.igem.org

(Difference between revisions)
Line 20: Line 20:
Our system can be linked to any other sensory system introduced into a microorganism, therefore creating a '''multiple-sensor-microorganism'''. Since the registration of a signal occurs via methylation of a specific DNA sequence called Memory Part (MP), a specific signal can be stored effectively for either a short or a longer period of time, to eventually be read-out in an easy digestion providing a simple yes or no answer.
Our system can be linked to any other sensory system introduced into a microorganism, therefore creating a '''multiple-sensor-microorganism'''. Since the registration of a signal occurs via methylation of a specific DNA sequence called Memory Part (MP), a specific signal can be stored effectively for either a short or a longer period of time, to eventually be read-out in an easy digestion providing a simple yes or no answer.
-
 
-
<h4>Debugger</h4>
 
-
 
-
Science relies on experimentations. Besides simply measuring or tracking a substance or concentration biologists can encounter unexplainable or vague findings, especially when experimenting with modified or synthetically engineered proteins or genetic networks. Many general questions rise: Is the pathway I’m working with still active? Does my introduced or suspected protein accurately activate my gene?
 
-
 
-
The system of our Cellular Logbook can help to answer these questions. Our methylation based system only requires a zinc finger and methyltransferase fusion protein (ZnF-Mtase) and our specific Memory Part. Any promoter can be set before our Mtase and can thus be effectively tested. And since the memory plasmid is so expandable not just one but multiple promoters can be tested in the same experiment if a  unique zinc finger is linked to a methyltransferase for every sensor. This allows any scientist to simultaneously test all parts of a pathway or '''multiple pathways''' at the same time, creating a fuller understanding of any complex mechanism.
 
<h4>Time and concentration indicator</h4>
<h4>Time and concentration indicator</h4>
Line 33: Line 27:
<h1>Future perspective</h1>
<h1>Future perspective</h1>
 +
<h4>Debugger</h4>
 +
 +
Science relies on experimentations. Besides simply measuring or tracking a substance or concentration biologists can encounter unexplainable or vague findings, especially when experimenting with modified or synthetically engineered proteins or genetic networks. Many general questions rise: Is the pathway I’m working with still active? Does my introduced or suspected protein accurately activate my gene?
 +
 +
The system of our Cellular Logbook can help to answer these questions. Our methylation based system only requires a zinc finger and methyltransferase fusion protein (ZnF-Mtase) and our specific Memory Part. Any promoter can be set before our Mtase and can thus be effectively tested. And since the memory plasmid is so expandable not just one but multiple promoters can be tested in the same experiment if a  unique zinc finger is linked to a methyltransferase for every sensor. This allows any scientist to simultaneously test all parts of a pathway or '''multiple pathways''' at the same time, creating a fuller understanding of any complex mechanism.
 +
<h4>Clean Water Supply Detection</h4>
<h4>Clean Water Supply Detection</h4>
If we are able to use our bacteria in the environment, our Cellular Logbook can be used to sense toxic signals in the environment. One of the places in need for toxic detection are the water supplies, ponds and rivers in the Netherlands. We had a talk with Ron van der Oost from Waternet [https://www.waternet.nl/about-waternet/]. During this talk we came to the conclusion that a multi sensor that is able to detect 20 different toxic groups, and is able to detect if the concentration has surpassed a specific amount, would be greatly cost reducing compared to the current setup for detecting if a water supply is clean of toxics, which can cost up to 40.000 euros / place. To achieve this we need a system that contains the bacteria, so no bacteria will roam in the environment. The KWR Water Cycle Research Institute[http://www.kwrwater.nl/] has developed a flow-trough sensor that can also serve as a container for our sensor[http://www.kwrwater.nl/uploadedFiles/Website_KWR/Publicaties_%40_Producten/Posters/Development%20of%20a%20water%20toxicity%20sensor%20based%20on%20genetically%20modified%20bacteria.pdf].  
If we are able to use our bacteria in the environment, our Cellular Logbook can be used to sense toxic signals in the environment. One of the places in need for toxic detection are the water supplies, ponds and rivers in the Netherlands. We had a talk with Ron van der Oost from Waternet [https://www.waternet.nl/about-waternet/]. During this talk we came to the conclusion that a multi sensor that is able to detect 20 different toxic groups, and is able to detect if the concentration has surpassed a specific amount, would be greatly cost reducing compared to the current setup for detecting if a water supply is clean of toxics, which can cost up to 40.000 euros / place. To achieve this we need a system that contains the bacteria, so no bacteria will roam in the environment. The KWR Water Cycle Research Institute[http://www.kwrwater.nl/] has developed a flow-trough sensor that can also serve as a container for our sensor[http://www.kwrwater.nl/uploadedFiles/Website_KWR/Publicaties_%40_Producten/Posters/Development%20of%20a%20water%20toxicity%20sensor%20based%20on%20genetically%20modified%20bacteria.pdf].  

Revision as of 13:49, 24 September 2012