Team:Warsaw/Project

From 2012.igem.org

(Difference between revisions)
Line 13: Line 13:
<div id="tab1">
<div id="tab1">
<br clear="all" />
<br clear="all" />
-
    <p>This year we had an ambitious goal to create a bacteria strain which could carry certain chosen genes into eucaryotic cells. For safety reasons, and also to keep the work more coherent, we divided our task into two separate steps:</p><br />
+
<div id="ornam"><span><b>Why this project?</b></span></div>
-
<p>The first one was creating an 'invasive' Bacillus subtilis strain. Bacillus is a non-pathogenic bacteria living peacefully in the soil. However, there are many bacteria species that have the ability to invade animal as well as human cells. We had an idea to create a plasmid for B. subtilis carrying listerolysin gene as to enable the bacteria to enter the eucaryotic cells just as Listeria monocytogenes from which the gene was taken does. L. monocytogenes is a dangerous pathogen; however, B. subtilis is a safe bacterium, which lyses after entering the eucaryotic cell; the LLO gene gives it only the opportunity to enter them. The plasmid also carries the GFP coding device which will help us to determine the success of our experiment. After the lysis of B. subtilis cells, GFP will be released and the measurement of its fluorescence will give us the idea of how the experiment worked out.</p><br />
+
<p>   Escherichia coli, which is by far the greatest model for iGEM projects, is a gram negative bacterium. Because of that, the expression of some proteins, which came from gram positive bacteria, is sometimes hard to achieve in E. coli. Even if we managed to express proteins from gram positive bacteria in a gram negative model, the proteins could for example have different localization in the cell and behave differently from how they did in the original cell they came from.</p>
-
<p>The second step was creating a shuttle vector which would be capable of replication and gene expression inside the eucaryotic cells. The vector will carry RFP coding device, and it will be RFP flourescence measurement which will confirm the success of our experiment. However, due to safety reasons, we did not combine the two steps of our experiment. Each of the systems is tested separately, with all the safety precautions. In the future, when all the safety issues are resolved, these systems might be able to help a great deal in gene therapy. Delivering certain genes right into the malfunctioning cells would be a tremendous help in treatment of complicated diseases. </p>
+
<p>   </p>Bacillus subtilis is a great model of gram positive bacteria; it has also been used by some iGEM teams in previous years. We were curious, why only a few teams used that model. When we began searching partsregistry for some BioBricks especially for Bacillus subtilis, we realized that there is only a very limited number of them. It could be the reason why this model isn't so popular, but it is also the reason why we found working with Bacillus subtilis so interesting and at the same time so daring and challenging.
 +
 
 +
    Of course, we wanted to make a functional project, but we also thought that it is a great challenge to work with another model than E. coli. We truly believed, that making some new BioBricks for Bacillus subtilis, even such basic ones like promoters and rbs, is important because it would help the iGEM community to work with this great model of gram positive bacteria in the future.
 +
 
 +
 
 +
Our goal this year was to create a bacteria strain which could carry certain chosen genes into eucaryotic cells. For safety reasons, and also to keep the work more coherent, we divided our task into two separate steps:
 +
 
 +
The first one was creating an 'invasive' Bacillus subtilis strain. Bacillus is a non-pathogenic bacteria living peacefully in the soil. However, there are many bacteria species that have the ability to invade animal as well as human cells. We had an idea to create a plasmid for B. subtilis carrying listerolysin gene as to enable the bacteria to enter the eucaryotic cells just as Listeria monocytogenes from which the gene was taken does. L. monocytogenes is a dangerous pathogen; however, B. subtilis is a safe bacterium, which lyses after entering the eucaryotic cell; the LLO gene gives it only the opportunity to enter them. Since both of them are gram positive, gene expression should undergo without obstructions. The plasmid also carries the GFP coding device which will help us to determine the success of our experiment. After the lysis of B. subtilis cells, GFP will be released and the measurement of its fluorescence will give us the idea of how the experiment worked out.
 +
 
 +
The second step was creating a shuttle vector which would be capable of replication and gene expression inside the eucaryotic cells. The vector will carry RFP coding device, and it will be RFP flourescence measurement which will confirm the success of our experiment. However, due to safety reasons, we did not combine the two steps of our experiment. Each of the systems is tested separately, with all the safety precautions. In the future, when all the safety issues are resolved, these systems might be able to help a great deal in gene therapy. Delivering certain genes right into the malfunctioning cells would be a tremendous help in treatment of complicated diseases.
<br clear="all" />
<br clear="all" />
     </div>
     </div>

Revision as of 14:31, 23 September 2012

Warsaw Team





Why this project?

Escherichia coli, which is by far the greatest model for iGEM projects, is a gram negative bacterium. Because of that, the expression of some proteins, which came from gram positive bacteria, is sometimes hard to achieve in E. coli. Even if we managed to express proteins from gram positive bacteria in a gram negative model, the proteins could for example have different localization in the cell and behave differently from how they did in the original cell they came from.

Bacillus subtilis is a great model of gram positive bacteria; it has also been used by some iGEM teams in previous years. We were curious, why only a few teams used that model. When we began searching partsregistry for some BioBricks especially for Bacillus subtilis, we realized that there is only a very limited number of them. It could be the reason why this model isn't so popular, but it is also the reason why we found working with Bacillus subtilis so interesting and at the same time so daring and challenging. Of course, we wanted to make a functional project, but we also thought that it is a great challenge to work with another model than E. coli. We truly believed, that making some new BioBricks for Bacillus subtilis, even such basic ones like promoters and rbs, is important because it would help the iGEM community to work with this great model of gram positive bacteria in the future. Our goal this year was to create a bacteria strain which could carry certain chosen genes into eucaryotic cells. For safety reasons, and also to keep the work more coherent, we divided our task into two separate steps: The first one was creating an 'invasive' Bacillus subtilis strain. Bacillus is a non-pathogenic bacteria living peacefully in the soil. However, there are many bacteria species that have the ability to invade animal as well as human cells. We had an idea to create a plasmid for B. subtilis carrying listerolysin gene as to enable the bacteria to enter the eucaryotic cells just as Listeria monocytogenes from which the gene was taken does. L. monocytogenes is a dangerous pathogen; however, B. subtilis is a safe bacterium, which lyses after entering the eucaryotic cell; the LLO gene gives it only the opportunity to enter them. Since both of them are gram positive, gene expression should undergo without obstructions. The plasmid also carries the GFP coding device which will help us to determine the success of our experiment. After the lysis of B. subtilis cells, GFP will be released and the measurement of its fluorescence will give us the idea of how the experiment worked out. The second step was creating a shuttle vector which would be capable of replication and gene expression inside the eucaryotic cells. The vector will carry RFP coding device, and it will be RFP flourescence measurement which will confirm the success of our experiment. However, due to safety reasons, we did not combine the two steps of our experiment. Each of the systems is tested separately, with all the safety precautions. In the future, when all the safety issues are resolved, these systems might be able to help a great deal in gene therapy. Delivering certain genes right into the malfunctioning cells would be a tremendous help in treatment of complicated diseases.


This year we had an ambitious goal to create a bacteria strain which could carry certain chosen genes into eucaryotic cells. For safety reasons, and also to keep the work more coherent, we divided our task into two separate steps:


The first one was creating an 'invasive' Bacillus subtilis strain. Bacillus is a non-pathogenic bacteria living peacefully in the soil. However, there are many bacteria species that have the ability to invade animal as well as human cells. We had an idea to create a plasmid for B. subtilis carrying listerolysin gene as to enable the bacteria to enter the eucaryotic cells just as Listeria monocytogenes from which the gene was taken does. L. monocytogenes is a dangerous pathogen; however, B. subtilis is a safe bacterium, which lyses after entering the eucaryotic cell; the LLO gene gives it only the opportunity to enter them. The plasmid also carries the GFP coding device which will help us to determine the success of our experiment. After the lysis of B. subtilis cells, GFP will be released and the measurement of its fluorescence will give us the idea of how the experiment worked out.


The second step was creating a shuttle vector which would be capable of replication and gene expression inside the eucaryotic cells. The vector will carry RFP coding device, and it will be RFP flourescence measurement which will confirm the success of our experiment. However, due to safety reasons, we did not combine the two steps of our experiment. Each of the systems is tested separately, with all the safety precautions. In the future, when all the safety issues are resolved, these systems might be able to help a great deal in gene therapy. Delivering certain genes right into the malfunctioning cells would be a tremendous help in treatment of complicated diseases.




21. If any one break a hole into a house (break in to steal), he shall be put to death before that hole and be buried.
22. If any one is committing a robbery and is caught, then he shall be put to death.
23. If the robber is not caught, then shall he who was robbed claim under oath the amount of his loss; then shall the community, and ... on whose ground and territory and in whose domain it was compensate him for the goods stolen.
24. If persons are stolen, then shall the community and ... pay one mina of silver to their relatives.
25. If fire break out in a house, and some one who comes to put it out cast his eye upon the property of the owner of the house, and take the property of the master of the house, he shall be thrown into that self-same fire.
26. If a chieftain or a man (common soldier), who has been ordered to go upon the king's highway for war does not go, but hires a mercenary, if he withholds the compensation, then shall this officer or man be put to death, and he who represented him shall take possession of his house.
27. If a chieftain or man be caught in the misfortune of the king (captured in battle), and if his fields and garden be given to another and he take possession, if he return and reaches his place, his field and garden shall be returned to him, he shall take it over again.
28. If a chieftain or a man be caught in the misfortune of a king, if his son is able to enter into possession, then the field and garden shall be given to him, he shall take over the fee of his father.
29. If his son is still young, and can not take possession, a third of the field and garden shall be given to his mother, and she shall bring him up.
30. If a chieftain or a man leave his house, garden, and field and hires it out, and some one else takes possession of his house, garden, and field and uses it for three years: if the first owner return and claims his house, garden, and field, it shall not be given to him, but he who has taken possession of it and used it shall continue to use it.