Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 15: Line 15:
<p><br /><span class="math">$\frac{d}{dt}[S] = k_{-1}[S_{a}] - k_{1}[S][M]$</span><br /></p>
<p><br /><span class="math">$\frac{d}{dt}[S] = k_{-1}[S_{a}] - k_{1}[S][M]$</span><br /></p>
-
<p>where <span class="math"><em>M</em></span> represents the concentration of recombinase monomers and <span class="math"><em>k</em><sub>1</sub></span> and <span class="math"><em>k</em><sub>−1</sub></span> represent the association and dissociation rate constant, respectively. As described in the above equation, there is only two possibilities of changing the concentration of the state <span class="math"><em>S</em></span>: it can increase (positive sign) if a molecule in the state <span class="math"><em>S</em><sub><em>a</em></sub></span> loses the monomer or it can decrease (negative sign) if a monomer binds the DNA.</p>
+
<p>where <span class="math"><em>M</em></span> represents the concentration of recombinase monomers, <span class="math"><em>k</em><sub>1</sub></span> and <span class="math"><em>k</em><sub>−1</sub></span> represent the association and dissociation rate constant, respectively. As described in the above equation, there is only two possibilities of changing the concentration of the state <span class="math"><em>S</em></span>: it can increase (positive sign) if a molecule in the state <span class="math"><em>S</em><sub><em>a</em></sub></span> loses the monomer or it can decrease (negative sign) if a monomer binds the DNA.</p>
<p>Using gel mobility shift assays it is possible to estimate the affinity of the monomer for their target site, represented by the parameters <span class="math"><em>k</em><sub>−1</sub></span> and <span class="math"><em>k</em><sub>1</sub></span>, as described by Ringrose et al <span class="citation"></span>. They also estimate, using the same proceeding, the parameters <span class="math"><em>k</em><sub>−2</sub></span> and <span class="math"><em>k</em><sub>2</sub></span> referring to the association and dissociation rate constant of the monomer for a target site when the neighbor site is already occupied by another monomer. Other parameters (<span class="math"><em>k</em><sub>34</sub></span>, <span class="math"><em>k</em><sub>−34</sub></span>, <span class="math"><em>k</em><sub>5</sub></span> and <span class="math"><em>k</em><sub>−5</sub></span>) were determined by the authors comparing the simulated and in vitro recombination data, see Table 1. The entire recombination reaction is illustrated in the figure .</p>
<p>Using gel mobility shift assays it is possible to estimate the affinity of the monomer for their target site, represented by the parameters <span class="math"><em>k</em><sub>−1</sub></span> and <span class="math"><em>k</em><sub>1</sub></span>, as described by Ringrose et al <span class="citation"></span>. They also estimate, using the same proceeding, the parameters <span class="math"><em>k</em><sub>−2</sub></span> and <span class="math"><em>k</em><sub>2</sub></span> referring to the association and dissociation rate constant of the monomer for a target site when the neighbor site is already occupied by another monomer. Other parameters (<span class="math"><em>k</em><sub>34</sub></span>, <span class="math"><em>k</em><sub>−34</sub></span>, <span class="math"><em>k</em><sub>5</sub></span> and <span class="math"><em>k</em><sub>−5</sub></span>) were determined by the authors comparing the simulated and in vitro recombination data, see Table 1. The entire recombination reaction is illustrated in the figure .</p>
Line 30: Line 30:
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
<li><p><span class="math">[<em>S</em>]<sub>0</sub></span> - initial concentration of ORF inside bacterium</p></li>
</ul>
</ul>
-
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to <span class="citation"></span> <br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0. 7 * 10<sup> − 15</sup><em>L</em></span><br />. Using this, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration (<br /><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6 * 10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br />).</p>
+
<p>To estimate the concentration of the variables, we need the volume of <em>E coli</em>. According to [??]<br /><span class="math"><em>V</em><sub><em>e</em><em>c</em></sub> = 0. 7 * 10<sup> − 15</sup><em>L</em></span><br />. Using this, it is possible to estimate the concentration of one molecule inside the bacterium in molar concentration (<br/><span class="math">1<em>M</em> = 1<em>m</em><em>o</em><em>l</em> / 1<em>L</em> = 6 * 10<sup>23</sup><em>m</em><em>o</em><em>l</em><em>e</em><em>c</em><em>u</em><em>l</em><em>e</em><em>s</em> / <em>L</em></span><br />).</p>
<p><br /><span class="math">$[1 molecule] = 1 molecule/(0.7 10^{-15} L) = \frac{1}{6 10^{23}  
<p><br /><span class="math">$[1 molecule] = 1 molecule/(0.7 10^{-15} L) = \frac{1}{6 10^{23}  
0.7 10^{-15}}M \simeq 10^{-9} M = 1nM$</span><br /></p>
0.7 10^{-15}}M \simeq 10^{-9} M = 1nM$</span><br /></p>

Revision as of 22:21, 21 September 2012