Team:USP-UNESP-Brazil/Plasmid Plug n Play/Modeling

From 2012.igem.org

(Difference between revisions)
Line 15: Line 15:
<p><br /><span class="math">$\frac{d}{dt}[S] = k_{-1}[S_{a}] - k_{1}[S][M]$</span><br /></p>
<p><br /><span class="math">$\frac{d}{dt}[S] = k_{-1}[S_{a}] - k_{1}[S][M]$</span><br /></p>
-
<p>where <span class="math"><em>M</em></span> represents the concentration of recombinase monomers and <span class="math"><em>k</em><sub>1</sub></span> and <span class="math"><em>k</em><sub> − 1</sub></span> represent the association and dissociation rate constant, respectively. As described in the above equation, there is only two possibilities of changing the concentration of the state <span class="math"><em>S</em></span>: it can increase (positive sign) if a molecule in the state <span class="math"><em>S</em><sub><em>a</em></sub></span> loses the monomer or it can decrease (negative sign) if a monomer binds the DNA.</p>
+
<p>where <span class="math"><em>M</em></span> represents the concentration of recombinase monomers and <span class="math"><em>k</em><sub>1</sub></span> and <span class="math"><em>k</em><sub>−1</sub></span> represent the association and dissociation rate constant, respectively. As described in the above equation, there is only two possibilities of changing the concentration of the state <span class="math"><em>S</em></span>: it can increase (positive sign) if a molecule in the state <span class="math"><em>S</em><sub><em>a</em></sub></span> loses the monomer or it can decrease (negative sign) if a monomer binds the DNA.</p>
{{:Team:USP-UNESP-Brazil/Templates/RImage | image=Table1_pplay.jpeg | caption=Table 1. Association and dissociation rate constants for FLP and Cre binding to DNA, obtained by [1]. | size=600px }}
{{:Team:USP-UNESP-Brazil/Templates/RImage | image=Table1_pplay.jpeg | caption=Table 1. Association and dissociation rate constants for FLP and Cre binding to DNA, obtained by [1]. | size=600px }}

Revision as of 22:17, 21 September 2012