Team:Korea U Seoul/Human Practice/Ownership Innovation
From 2012.igem.org
(Created page with "{{:template:css}}") |
|||
(8 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | {{: | + | {{:Team:Korea U Seoul/template/css}} |
+ | |||
+ | <html> | ||
+ | <body> | ||
+ | |||
+ | <div id="whole_wrapper" style="width:975px; height:100%;"> | ||
+ | <div id="left wrapper" style="float:left; width:300px; height:100%;"> | ||
+ | <div id="wrapper0" style="width:285px; height:50px; padding-left:15px;"> | ||
+ | <div id="deco" style="width:270px; height:50px;"> | ||
+ | <embed src="https://static.igem.org/mediawiki/2012/6/65/KUS_deco.swf" width="50px" height="50px"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div id="wrapper1" style="width:300px; height:315px;"> | ||
+ | <embed src="https://static.igem.org/mediawiki/2012/e/ee/KUS_Sidemenu.swf" width="240px" height="315px"> | ||
+ | </div> | ||
+ | <div id="wrapper2" style="width:300px; height:108px;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/1/12/KUS_Ownership.jpg" width="300px" height="90px"> | ||
+ | </div> | ||
+ | <div id="space right" style="width:300px; height:108px;"> | ||
+ | </div> | ||
+ | <div id="wrapper3" style="width:300px; height:180px;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/9/9e/KUS_Contactinfo.gif" width="270px" height="180px"> | ||
+ | </div> | ||
+ | <div id="vertical" style="width:300px;"> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="right wrapper1" style="float:left; width:675px; height:100%;"> | ||
+ | <div id="middle space" style="float:left; width:72px; height:100%;"> | ||
+ | </div> | ||
+ | <div id="right wrapper2" style="width:603px; height:100%;"> | ||
+ | <h4><p id="title">Rice Guardian</p></h4> | ||
+ | <dt> | ||
+ | <b> Our team focused on bacterial blight of rice which causes infection on rice and economical losses. We decided to prevent Bacterial blight by killing <i> Xanthomonas oryzae </i> KACC10331. </b> | ||
+ | </dt> | ||
+ | <dd> | ||
+ | <p> The previous attempts purposed to prevent plant disease have been conducted by genetically manipulated plants known as GMO(Genetically Modified Organism). However this approach has side effects. For example, GMO has different protein compositions from food that we usually take, so it could cause unknown effects to human body. Also, these modified products could cause allergy. Like this, the stability of GMO is not substantiated yet. | ||
+ | On the other hand, our approach to prevent plant disease was conducted by modifying <i> E. coli </i>. As the modified <i> E. coli </i> kills the problematic bacteria and suicides, there is no residue and so the side effects are fewer than the previous approach. | ||
+ | Aside from this, the way we designed is alternative method for agricultural pesticides. As you know, agricultural pesticides are bad for health and also environment. | ||
+ | </p> | ||
+ | </dd> | ||
+ | <br> | ||
+ | <h4><p id="title">Binary Full Adder Using Biological Logic Gate System</p></h4> | ||
+ | <dd> | ||
+ | <p> There have been many researches on logic circuits in biological system, especially in the transcriptional system. A set of genetic logic gates (AND, OR and XOR) have been constructed and verified experimentally. We used each genetic logic gate as building blocks for creating transcriptional binary full adder. Unlike previous studies, our operation contains successive logic gates, so we needed to connect each logic gate. To address this issue, we employed quorum sensing system in various microorganisms. Quorum sensing is realized by a variety of signal molecules including isopropylthiogalactoside (IPTG), arabinose and N-(3-Oxohexanoyl)-L-homoserine lactone (AHL). Among these, we selected C4 AHL as a signal molecule in the whole transcriptional full adder system for simplification. Besides experimental design, we constructed computational model with R which is one of statistical programs. By implementing Hill equation and biological diffusion dynamics as a theoretical base, we obtained curves showing concentrations of the signal molecules. | ||
+ | </p> | ||
+ | </dd> | ||
+ | <br><br> | ||
+ | <div id="wrapperB" style="width:603px; height:63px; "> | ||
+ | <a href="http://korea.ac.kr"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/a/ab/KUS_Ku.jpg" style="padding-top:10px;" width="80px" ></a> | ||
+ | |||
+ | <a href="http://compbio.korea.ac.kr/wiki/index.php/Main_Page"> <img src="https://static.igem.org/mediawiki/2012/5/5d/KUS_Csbl.jpg" width="82px" ></a> | ||
+ | |||
+ | <a href="http://ctl.korea.ac.kr/index.ctl"> <img src="https://static.igem.org/mediawiki/2012/4/49/KUS_Ctl.jpg" width="75px" ></a> | ||
+ | |||
+ | <a href="http://www.cosmogenetech.com/ko"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/8/81/KUS_Cosmo.jpg" width="75px" height="70"></a> | ||
+ | |||
+ | |||
+ | <a href="http://www.youtube.com/watch?v=vr7TlPjyAEg"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/c/c4/KUS_Youtube.jpg" width="65px" ></a> | ||
+ | |||
+ | |||
+ | <a href="http://www.facebook.com/2012iGEM.KU"> <img src="https://static.igem.org/mediawiki/2012/7/71/KUS_Facebook.jpg" width="52px"></a> | ||
+ | |||
+ | |||
+ | <a href="https://twitter.com/iGEM_KU2012"> <img src="https://static.igem.org/mediawiki/2012/4/4d/KUS_Twitter.jpg" width="63px"></a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | </body> | ||
+ | |||
+ | </html> |
Latest revision as of 02:18, 27 September 2012
Rice Guardian
The previous attempts purposed to prevent plant disease have been conducted by genetically manipulated plants known as GMO(Genetically Modified Organism). However this approach has side effects. For example, GMO has different protein compositions from food that we usually take, so it could cause unknown effects to human body. Also, these modified products could cause allergy. Like this, the stability of GMO is not substantiated yet. On the other hand, our approach to prevent plant disease was conducted by modifying E. coli . As the modified E. coli kills the problematic bacteria and suicides, there is no residue and so the side effects are fewer than the previous approach. Aside from this, the way we designed is alternative method for agricultural pesticides. As you know, agricultural pesticides are bad for health and also environment.
Binary Full Adder Using Biological Logic Gate System
There have been many researches on logic circuits in biological system, especially in the transcriptional system. A set of genetic logic gates (AND, OR and XOR) have been constructed and verified experimentally. We used each genetic logic gate as building blocks for creating transcriptional binary full adder. Unlike previous studies, our operation contains successive logic gates, so we needed to connect each logic gate. To address this issue, we employed quorum sensing system in various microorganisms. Quorum sensing is realized by a variety of signal molecules including isopropylthiogalactoside (IPTG), arabinose and N-(3-Oxohexanoyl)-L-homoserine lactone (AHL). Among these, we selected C4 AHL as a signal molecule in the whole transcriptional full adder system for simplification. Besides experimental design, we constructed computational model with R which is one of statistical programs. By implementing Hill equation and biological diffusion dynamics as a theoretical base, we obtained curves showing concentrations of the signal molecules.