Team:ULB-Brussels

From 2012.igem.org

(Difference between revisions)
 
(42 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
+
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
-
<html>
 
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000">
 
-
In synthetic biology, one of the main issues scientists and engineers must tackle is biochemical pathways optimization. In fact, it is often difficult to predict in which positions the genes of the pathway must be assembled in order to efficiently produce the desired molecule.
 
-
In this project, we are going to develop an exceptional natural tool that could be used to optimize bio-production pathways: the integron. Integrons are genetic platforms which contain (re)movable gene cassettes. These integrons are mostly known to carry resistances to antibiotics. They are flanked with recombination sites which allow gene shuffling inside the integron thanks to a specific enzyme: the integrase.
+
<img id="logo" src="https://static.igem.org/mediawiki/2012/8/87/Bac.jpg" height="25%" width="25%">
 +
<img id="logo" src="https://static.igem.org/mediawiki/2012/2/21/Dessin_sam.jpg" height="48%" width="48%">
 +
<img id="logo" src="https://static.igem.org/mediawiki/2012/5/55/Terry.jpg" height="25%" width="25%">
 +
 
 +
   
-
As a proof of concept, we are going to produce two antibiotics: Microcin C7 and Microcin B17. The first one inhibits a tRNA synthetase, the second a gyrase. These two antibiotic operons encompass respectively 6 and 7 genes.
 
-
Two bacteria possessing the integron containing the antibiotics production gene cassettes, the integrase and a low resistance to the opposite antibiotic will be put in competition. With the integrase, we could change the natural order of the genes in order to optimize production. In parallel, this competition experiment will be modeled.
 
-
</div>
 
</html>
</html>
-
<!-- *** End of the alert box *** -->
+
{| style="color:#1b2c8a;background-color:#fff;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="100%" align="center"
-
 
+
-
 
+
-
 
+
-
{|align="justify"
+
-
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
+
-
|[[Image:ULB-Brussels_logo.png|200px|right|frame]]
+
-
|-
+
-
|
+
-
''Tell us more about your project.  Give us background.  Use this as the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
+
-
|[[Image:ULB-Brussels_team.png|right|frame|Your team picture]]
+
-
|-
+
-
|
+
-
|align="center"|[[Team:ULB-Brussels | Team ULB-Brussels]]
+
-
|}
+
-
 
+
-
<!--- The Mission, Experiments --->
+
-
 
+
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
!align="center"|[[Team:ULB-Brussels|Home]]
!align="center"|[[Team:ULB-Brussels|Home]]
!align="center"|[[Team:ULB-Brussels/Team|Team]]
!align="center"|[[Team:ULB-Brussels/Team|Team]]
-
!align="center"|[https://igem.org/Team.cgi?year=2012&team_name=ULB-Brussels Official Team Profile]
 
!align="center"|[[Team:ULB-Brussels/Project|Project]]
!align="center"|[[Team:ULB-Brussels/Project|Project]]
-
!align="center"|[[Team:ULB-Brussels/Parts|Parts Submitted to the Registry]]
+
!align="center"|[[Team:ULB-Brussels/Parts|Parts]]
!align="center"|[[Team:ULB-Brussels/Modeling|Modeling]]
!align="center"|[[Team:ULB-Brussels/Modeling|Modeling]]
-
!align="center"|[[Team:ULB-Brussels/Notebook|Notebook]]
+
!align="center"|[[Team:ULB-Brussels/Conclusion|Conclusion & Perspectives]]
!align="center"|[[Team:ULB-Brussels/Safety|Safety]]
!align="center"|[[Team:ULB-Brussels/Safety|Safety]]
-
!align="center"|[[Team:ULB-Brussels/Attributions|Attributions]]
+
!align="center"|[[Team:ULB-Brussels/Previous|Older wiki's]]
|}
|}
 +
 +
 +
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 +
&nbsp;
 +
 +
<center><font color="#000000"; size="100"> Team ULB-Brussels, welcome to our </font></center>
 +
<br></br><p><center><font color="#000000"; size="100"> wiki! </font></center></p>
 +
<br></br>
 +
<center><img id="logo" src="https://static.igem.org/mediawiki/2012/e/e3/Groupe.jpg" height="250"></center>
 +
 +
<br></br>
 +
 +
<font color=black>
 +
<h2>Abstract of our project</h2>
 +
 +
 +
<p><img id="logo" src="https://static.igem.org/mediawiki/2012/6/6d/Bacolor.jpg" height="30%" width="30%" align="left">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In synthetic biology, one of the main issues scientists and engineers must tackle is biochemical pathways optimization.
 +
In fact, it is often difficult to predict in which positions the genes of the pathway must be assembled in order to efficiently
 +
produce the desired molecule.
 +
<br></br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In this project, we are going to develop an exceptional natural tool that could be used to optimize bio-production pathways: 
 +
the integron. Integrons are genetic platforms which contain (re)movable gene cassettes. These integrons are mostly known to carry
 +
resistances to antibiotics. They are flanked with recombination sites which allow gene shuffling inside the integron thanks to a
 +
specific enzyme: the integrase.
 +
<br></br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;As a proof of concept, we are going to produce two antibiotics: Microcin C7 and Microcin B17. The first one inhibits a tRNA synthetase,
 +
the second a gyrase. These two antibiotic operons encompass respectively 6 and 7 genes.
 +
<br></br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Two bacteria possessing the integron containing the antibiotics production gene cassettes, the integrase and a low resistance to the
 +
opposite antibiotic will be put in competition. With the integrase, we could change the natural order of the genes in order to optimize
 +
production. In parallel, this competition experiment will be modeled.</p>
 +
 +
</font>
 +
<td><a href=""#hautdepage""><img id="logo" src="http://www.clker.com/cliparts/9/2/8/c/1216180855712705788claudita_home_icon.svg.hi.png" height="40px" width="40px" align="right"></a>
 +
<br></br>
 +
<h2></h2>
 +
<br></br>
 +
 +
<center></html>{{Team:TU_Munich/Badge}}<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
<img id="logo" src="http://3.bp.blogspot.com/_5RKhnQH_jbw/S9F_aBJLJ1I/AAAAAAAAAFE/zQWBGUE-bCA/S1600-R/Gib+Lebon+4.jpg" height="200px" width="200px"></center>
 +
 +
 +
<center><p>For the help we gave to the TU Munich team to &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
 +
And thank you to Gib Lebon for&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </center>
 +
 +
<center><p>complete their survey, here is a collaboration medal.
 +
  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
the several drawings. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</center>
 +
<center><p><a href="https://2012.igem.org/Team:TU_Munich"> Here is their wiki.</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 +
<a href="http://gib-lebon.blogspot.be/"> More Here.</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</center>
 +
 +
 +
 +
<td><a href=""#hautdepage""><img id="logo" src="http://www.clker.com/cliparts/9/2/8/c/1216180855712705788claudita_home_icon.svg.hi.png" height="40px" width="40px" align="right"></a>
 +
<br></br>
 +
<h2></h2>
 +
 +
 +
<br></br>
 +
<br></br>
 +
 +
<center><td><a href="http://www.ulb.ac.be/facs/sciences/index.html"><img id="logo" src="https://static.igem.org/mediawiki/2012/8/87/Logo-sciences.png" height="120px" width="300px"></a>
 +
 +
<td><a href="http://www.ulb.ac.be/"><img id="logo" src="https://static.igem.org/mediawiki/2012/0/0e/Logo-ULB.jpg" height="120px" width="120px"></a>
 +
&nbsp;&nbsp;&nbsp;&nbsp;
 +
<td><a href="http://www.ulb.ac.be/inforsciences3/accueil/">
 +
<img id="logo" src="https://static.igem.org/mediawiki/2012/b/b5/Inforsciences.png" height="120px" width="400px"></a>
 +
</center>
 +
<br></br>
 +
<br></br>
 +
</html>

Latest revision as of 22:19, 26 September 2012

Home Team Project Parts Modeling Conclusion & Perspectives Safety Older wiki's


 

Team ULB-Brussels, welcome to our


wiki!





Abstract of our project

     In synthetic biology, one of the main issues scientists and engineers must tackle is biochemical pathways optimization. In fact, it is often difficult to predict in which positions the genes of the pathway must be assembled in order to efficiently produce the desired molecule.

     In this project, we are going to develop an exceptional natural tool that could be used to optimize bio-production pathways: the integron. Integrons are genetic platforms which contain (re)movable gene cassettes. These integrons are mostly known to carry resistances to antibiotics. They are flanked with recombination sites which allow gene shuffling inside the integron thanks to a specific enzyme: the integrase.

     As a proof of concept, we are going to produce two antibiotics: Microcin C7 and Microcin B17. The first one inhibits a tRNA synthetase, the second a gyrase. These two antibiotic operons encompass respectively 6 and 7 genes.

     Two bacteria possessing the integron containing the antibiotics production gene cassettes, the integrase and a low resistance to the opposite antibiotic will be put in competition. With the integrase, we could change the natural order of the genes in order to optimize production. In parallel, this competition experiment will be modeled.





This team completed TU Munich's survey on Standardization of BioBrick part descriptions                                

For the help we gave to the TU Munich team to                         And thank you to Gib Lebon for         

complete their survey, here is a collaboration medal.                           the several drawings.                     

Here is their wiki.                                                             More Here.