Team:Carnegie Mellon

From 2012.igem.org

(Difference between revisions)
 
(137 intermediate revisions not shown)
Line 1: Line 1:
 +
{{:Team:Carnegie_Mellon/Templates/Header}}
<html>
<html>
 +
<!-- Nav Bar -->
-
<head>
+
-
<title>Carnegie Mellon iGEM 2012</title>
+
<ul class="sf-menu sf-navbar">
-
<script type="text/javascript">
+
<li class="current" style ='width: 193px'>
-
//Drop Down Tabs Menu- Author: Dynamic Drive (http://www.dynamicdrive.com)
+
<a href="https://2012.igem.org/Team:Carnegie_Mellon">Home</a>
-
//Created: May 16th, 07'
+
<ul>
-
var tabdropdown={
+
<li class="current">
-
disappeardelay: 200, //set delay in miliseconds before menu disappears onmouseout
+
<a href="https://2012.igem.org/Team:Carnegie_Mellon">Overview</a>
-
disablemenuclick: false, //when user clicks on a menu item with a drop down menu, disable menu item's link?
+
</li>
-
enableiframeshim: 1, //1 or 0, for true or false
+
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hom-Introduction">Introduction</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hom-Team">Team</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hom-Attributions">Attributions</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hom-Acknowledgements">Acknowledgements</a>
 +
</li>
 +
</ul>
 +
</li>
 +
<li style ='width: 193px'>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Bio-Overview">BioBricks</a>
 +
<ul>
 +
                    <li class = 'offset' style ='width: 193px'> <a href="#"></a></li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Bio-Overview">Overview</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Bio-Submitted">Submitted Parts</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
<li style ='width: 193px'>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Overview">Methods and Results</a>
 +
<ul>
 +
<li class = 'offset' style ='width: 386px'> <a href="#"></a></li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Overview">Overview</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Results">Results</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Protocols">Protocols</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Challenges">Challenges</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Notebook">Notebook</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Safety">Safety</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
<li style ='width: 193px'>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Mod-Overview">Modeling</a>
 +
<ul>
 +
<li class = 'offset' style ='width: 579px'> <a href="#"></a></li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Mod-Overview">Overview</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Mod-Derivations">Derivations</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Mod-Matlab">Matlab</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Mod-Expanded">Expanded</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
<li style ='width: 193px'>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Overview">Human Practices</a>
 +
<ul>
 +
<li class = 'offset' style ='width: 302px'> <a href="#"></a></li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Overview">Overview</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Outreach">Outreach</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Circuit">Circuit Kit</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Software">Software</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Team">Team Presentation</a>
 +
</li>
 +
<li>
 +
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Teaching">Teaching Presentation</a>
 +
</li>
 +
</ul>
 +
</li>
 +
</ul>
 +
    <br /><br /><br />
-
//No need to edit beyond here////////////////////////
 
-
dropmenuobj: null, ie: document.all, firefox: document.getElementById&amp;&amp;!document.all, previousmenuitem:null,
 
-
currentpageurl: window.location.href.replace("http://"+window.location.hostname, "").replace(/^\//, ""), //get current page url (minus hostname, ie: http://www.dynamicdrive.com/)
 
-
getposOffset:function(what, offsettype){
 
-
var totaloffset=(offsettype=="left")? what.offsetLeft : what.offsetTop;
 
-
var parentEl=what.offsetParent;
 
-
while (parentEl!=null){
 
-
totaloffset=(offsettype=="left")? totaloffset+parentEl.offsetLeft : totaloffset+parentEl.offsetTop;
 
-
parentEl=parentEl.offsetParent;
 
-
}
 
-
return totaloffset;
 
-
},
 
-
showhide:function(obj, e, obj2){ //obj refers to drop down menu, obj2 refers to tab menu item mouse is currently over
 
-
if (this.ie || this.firefox)
 
-
this.dropmenuobj.style.left=this.dropmenuobj.style.top="-500px"
 
-
if (e.type=="click" &amp;&amp; obj.visibility==hidden || e.type=="mouseover"){
 
-
if (obj2.parentNode.className.indexOf("default")==-1) //if tab isn't a default selected one
 
-
obj2.parentNode.className="selected"
 
-
obj.visibility="visible"
 
-
}
 
-
else if (e.type=="click")
 
-
obj.visibility="hidden"
 
-
},
 
-
iecompattest:function(){
+
<!--Main Contents -->
-
return (document.compatMode &amp;&amp; document.compatMode!="BackCompat")? document.documentElement : document.body
+
-
},
+
-
clearbrowseredge:function(obj, whichedge){
+
<div id="main">
-
var edgeoffset=0
+
-
if (whichedge=="rightedge"){
+
-
var windowedge=this.ie &amp;&amp; !window.opera? this.standardbody.scrollLeft+this.standardbody.clientWidth-15 : window.pageXOffset+window.innerWidth-15
+
-
this.dropmenuobj.contentmeasure=this.dropmenuobj.offsetWidth
+
-
if (windowedge-this.dropmenuobj.x < this.dropmenuobj.contentmeasure)  //move menu to the left?
+
-
edgeoffset=this.dropmenuobj.contentmeasure-obj.offsetWidth
+
-
}
+
-
else{
+
-
var topedge=this.ie &amp;&amp; !window.opera? this.standardbody.scrollTop : window.pageYOffset
+
-
var windowedge=this.ie &amp;&amp; !window.opera? this.standardbody.scrollTop+this.standardbody.clientHeight-15 : window.pageYOffset+window.innerHeight-18
+
-
this.dropmenuobj.contentmeasure=this.dropmenuobj.offsetHeight
+
-
if (windowedge-this.dropmenuobj.y < this.dropmenuobj.contentmeasure){ //move up?
+
-
edgeoffset=this.dropmenuobj.contentmeasure+obj.offsetHeight
+
-
if ((this.dropmenuobj.y-topedge)<this.dropmenuobj.contentmeasure) //up no good either?
+
-
edgeoffset=this.dropmenuobj.y+obj.offsetHeight-topedge
+
-
}
+
-
this.dropmenuobj.firstlink.style.borderTopWidth=(edgeoffset==0)? 0 : "1px" //Add 1px top border to menu if dropping up
+
-
}
+
-
return edgeoffset
+
-
},
+
-
dropit:function(obj, e, dropmenuID){
+
<!--Table of Contents -->
-
if (this.dropmenuobj!=null){ //hide previous menu
+
<!-- Remove for testing
-
this.dropmenuobj.style.visibility="hidden" //hide menu
+
<div id="toc-holder" class="toc-holder">
-
if (this.previousmenuitem!=null &amp;&amp; this.previousmenuitem!=obj){
+
<a href="#" class="toc-link" id="toc-link"><span>&#9660;</span> Table of Contents</a>
-
if (this.previousmenuitem.parentNode.className.indexOf("default")==-1) //If the tab isn't a default selected one
+
<ul id="toc" class="toc-new" style="background: #c1a562;">
-
this.previousmenuitem.parentNode.className=""
+
<li class="toc-h1"><a href="#section1">1. FAQ</a>
-
}
+
<ul class="toc-sub closed">
-
}
+
<li><a href="#section1-1">1.1 Question 1</a></li>
-
this.clearhidemenu()
+
<li><a href="#section1-2">1.2 Question 2</a></li>
-
if (this.ie||this.firefox){
+
<li><a href="#section1-3">1.2 Question 3</a></li>
-
obj.onmouseout=function(){tabdropdown.delayhidemenu(obj)}
+
</ul>
-
obj.onclick=function(){return !tabdropdown.disablemenuclick} //disable main menu item link onclick?
+
</li>
-
this.dropmenuobj=document.getElementById(dropmenuID)
+
-
this.dropmenuobj.onmouseover=function(){tabdropdown.clearhidemenu()}
+
</ul>
-
this.dropmenuobj.onmouseout=function(e){tabdropdown.dynamichide(e, obj)}
+
</div>
-
this.dropmenuobj.onclick=function(){tabdropdown.delayhidemenu(obj)}
+
-->
-
this.showhide(this.dropmenuobj.style, e, obj)
+
<!-- .toc-holder -->
-
this.dropmenuobj.x=this.getposOffset(obj, "left")
+
-
this.dropmenuobj.y=this.getposOffset(obj, "top")
+
-
this.dropmenuobj.style.left=this.dropmenuobj.x-this.clearbrowseredge(obj, "rightedge")+"px"
+
-
this.dropmenuobj.style.top=this.dropmenuobj.y-this.clearbrowseredge(obj, "bottomedge")+obj.offsetHeight+1+"px"
+
-
this.previousmenuitem=obj //remember main menu item mouse moved out from (and into current menu item)
+
-
this.positionshim() //call iframe shim function
+
-
}
+
-
},
+
-
contains_firefox:function(a, b) {
+
  <div class = "main_content">
-
while (b.parentNode)
+
-
if ((b = b.parentNode) == a)
+
-
return true;
+
-
return false;
+
-
},
+
-
dynamichide:function(e, obj2){ //obj2 refers to tab menu item mouse is currently over
+
<p>
-
var evtobj=window.event? window.event : e
+
<h3 align="center">
-
if (this.ie&amp;&amp;!this.dropmenuobj.contains(evtobj.toElement))
+
<i><div class="glow-title">Real-time quantitative measurement of RNA and protein levels using fluorogen-activated biosensors </div></i>
-
this.delayhidemenu(obj2)
+
</h3>
-
else if (this.firefox&amp;&amp;e.currentTarget!= evtobj.relatedTarget&amp;&amp; !this.contains_firefox(evtobj.currentTarget, evtobj.relatedTarget))
+
</p>
-
this.delayhidemenu(obj2)
+
-
},
+
-
 
+
-
delayhidemenu:function(obj2){
+
-
this.delayhide=setTimeout(function(){tabdropdown.dropmenuobj.style.visibility='hidden'; if (obj2.parentNode.className.indexOf('default')==-1) obj2.parentNode.className=''},this.disappeardelay) //hide menu
+
-
},
+
-
 
+
-
clearhidemenu:function(){
+
-
if (this.delayhide!="undefined")
+
-
clearTimeout(this.delayhide)
+
-
},
+
-
 
+
-
positionshim:function(){ //display iframe shim function
+
-
if (this.enableiframeshim &amp;&amp; typeof this.shimobject!="undefined"){
+
-
if (this.dropmenuobj.style.visibility=="visible"){
+
-
this.shimobject.style.width=this.dropmenuobj.offsetWidth+"px"
+
-
this.shimobject.style.height=this.dropmenuobj.offsetHeight+"px"
+
-
this.shimobject.style.left=this.dropmenuobj.style.left
+
-
this.shimobject.style.top=this.dropmenuobj.style.top
+
-
}
+
-
this.shimobject.style.display=(this.dropmenuobj.style.visibility=="visible")? "block" : "none"
+
-
}
+
-
},
+
-
 
+
-
hideshim:function(){
+
-
if (this.enableiframeshim &amp;&amp; typeof this.shimobject!="undefined")
+
-
this.shimobject.style.display='none'
+
-
},
+
-
 
+
-
isSelected:function(menuurl){
+
-
var menuurl=menuurl.replace("http://"+menuurl.hostname, "").replace(/^\//, "")
+
-
return (tabdropdown.currentpageurl==menuurl)
+
-
},
+
-
 
+
-
init:function(menuid, dselected){
+
-
this.standardbody=(document.compatMode=="CSS1Compat")? document.documentElement : document.body //create reference to common "body" across doctypes
+
-
var menuitems=document.getElementById(menuid).getElementsByTagName("a")
+
-
for (var i=0; i<menuitems.length; i++){
+
-
if (menuitems[i].getAttribute("rel")){
+
-
var relvalue=menuitems[i].getAttribute("rel")
+
-
document.getElementById(relvalue).firstlink=document.getElementById(relvalue).getElementsByTagName("a")[0]
+
-
menuitems[i].onmouseover=function(e){
+
-
var event=typeof e!="undefined"? e : window.event
+
-
tabdropdown.dropit(this, event, this.getAttribute("rel"))
+
-
}
+
-
}
+
-
if (dselected=="auto" &amp;&amp; typeof setalready=="undefined" &amp;&amp; this.isSelected(menuitems[i].href)){
+
-
menuitems[i].parentNode.className+=" selected default"
+
-
var setalready=true
+
-
}
+
-
else if (parseInt(dselected)==i)
+
-
menuitems[i].parentNode.className+=" selected default"
+
-
}
+
-
}
+
-
 
+
-
}
+
-
</script>
+
-
<style>
+
-
.ddcolortabs{
+
-
padding: 0;
+
-
width: 100%;
+
-
background: transparent;
+
-
voice-family: "\"}\"";
+
-
voice-family: inherit;
+
-
}
+
-
 
+
-
.ddcolortabs ul{
+
-
font: bold 11px Arial;
+
-
margin:0;
+
-
padding:0;
+
-
list-style:none;
+
-
}
+
-
 
+
-
.ddcolortabs li{
+
-
display:inline;
+
-
margin:0 2px 0 0;
+
-
padding:0;
+
-
text-transform:uppercase;
+
-
}
+
-
 
+
-
 
+
-
.ddcolortabs a{
+
-
float:left;
+
-
color: white;
+
-
background: red url(media/color_tabs_left.gif) no-repeat left top;
+
-
margin:0 2px 0 0;
+
-
padding:0 0 1px 3px;
+
-
text-decoration:none;
+
-
letter-spacing: 1px;
+
-
}
+
-
 
+
-
 
+
-
.ddcolortabs a span{
+
-
float:left;
+
-
display:block;
+
-
background: transparent url(media/color_tabs_right.gif) no-repeat right top;
+
-
padding: 4px 8px 2px 7px;
+
-
}
+
-
 
+
-
.ddcolortabs a span{
+
-
float:none;
+
-
}
+
-
 
+
-
.ddcolortabs a:hover{
+
-
background-color: #591f20;
+
-
}
+
-
 
+
-
.ddcolortabs a:hover span{
+
-
background-color: #591f20;
+
-
}
+
-
 
+
-
.ddcolortabs .selected a, #ddcolortabs .selected a span{ /*currently selected tab*/
+
-
background-color: #591f20;
+
-
}
+
-
 
+
-
.ddcolortabsline{
+
-
clear: both;
+
-
padding: 0;
+
-
width: 96.1%;
+
-
height: 4px;
+
-
line-height: 100%;
+
-
background: black;
+
-
border-top: 1px solid #fff; /*Remove this to remove border between bar and tabs*/
+
-
}
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
/* ######### Style for Drop Down Menu ######### */
+
-
 
+
-
.dropmenudiv_a{
+
-
position:absolute;
+
-
top: 0;
+
-
border: 1px solid black; /*THEME CHANGE HERE*/
+
-
border-top-width: 8px; /*Top border width. Should match height of .ddcolortabsline above*/
+
-
border-bottom-width: 0;
+
-
font:normal 12px Times;
+
-
line-height:18px;
+
-
z-index:100;
+
-
background-color: white;
+
-
width: 200px;
+
-
visibility: hidden;
+
-
}
+
-
 
+
-
 
+
-
.dropmenudiv_a a{
+
-
width: auto;
+
-
display: block;
+
-
text-indent: 5px;
+
-
border-top: 0 solid #678b3f;
+
-
border-bottom: 1px solid #678b3f; /*THEME CHANGE HERE*/
+
-
padding: 2px 0;
+
-
text-decoration: none;
+
-
color: black;
+
-
}
+
-
 
+
-
* html .dropmenudiv_a a{ /*IE only hack*/
+
-
width: 100%;
+
-
}
+
-
 
+
-
.dropmenudiv_a a:hover{ /*THEME CHANGE HERE*/
+
-
background-color: #8a3c3d;
+
-
color: white;
+
-
}
+
-
 
+
-
/* ######### Style for Drop Down Menu ######### */
+
-
 
+
-
.dropmenudiv_a{
+
-
position:absolute;
+
-
top: 0;
+
-
border: 1px solid black; /*THEME CHANGE HERE*/
+
-
border-top-width: 8px; /*Top border width. Should match height of .ddcolortabsline above*/
+
-
border-bottom-width: 0;
+
-
font:normal 12px Arial;
+
-
line-height:18px;
+
-
z-index:100;
+
-
background-color: white;
+
-
width: 200px;
+
-
visibility: hidden;
+
-
}
+
-
 
+
-
 
+
-
.dropmenudiv_a a{
+
-
width: auto;
+
-
display: block;
+
-
text-indent: 5px;
+
-
border-top: 0 solid #678b3f;
+
-
border-bottom: 1px solid #678b3f; /*THEME CHANGE HERE*/
+
-
padding: 2px 0;
+
-
text-decoration: none;
+
-
color: black;
+
-
}
+
-
 
+
-
* html .dropmenudiv_a a{ /*IE only hack*/
+
-
width: 100%;
+
-
}
+
-
 
+
-
.dropmenudiv_a a:hover{ /*THEME CHANGE HERE*/
+
-
background-color: #8a3c3d;
+
-
color: white;
+
-
}
+
-
</style>
+
-
</head>
+
-
 
+
-
 
+
-
<p><br />
+
-
<i><b>Welcome to Carnegie Mellon University 2012 iGEM Team Wiki!</b></i>
+
-
<p><h1 align="center" /><b>Quantitative <i>In Vivo</i> Promoter Characterization Using Fluorescent Biosensors</b><br /><br />
+
-
<i>Using fluorescent technology to develop new promoters</i>
+
-
</h1></p>
+
<br /><br />
<br /><br />
-
</p><p><a href="/Image:Cmu2.jpeg" class="image" title="Image:Cmu2.jpeg"><img alt="Image:Cmu2.jpeg" src="/wiki/images/a/a6/Cmu2.jpeg" width="930" height="269" border="0" align="center"/></a>
 
</p>
</p>
 +
<h1> Introduction: Motivation and Background </h1>
 +
<p>
 +
<b> Our primary goal is to develop new promoters that can be measured with fluorescent technology.</b>
 +
</p>
-
<!-- CSS for Drop Down Tabs Menu #1 -->
+
<li><p> We seek to develop a system that will allow researchers in the field of synthetic biology to accurately measure a variety of metrics in gene expression networks including translational efficiency and transcriptional strength.
-
<link rel="stylesheet" type="text/css" href="ddcolortabs.css" />
+
</p></li>
 +
<li><p> We hypothesize that we can use Spinach (a fluorogen-activating RNA sequence) and a FAP (fluorogen activating protein) as biosensors to measure these gene expression metrics <i>in vivo</i> (in living cells), rather than <i>in vitro</i> (in a test tube), which can be very costly and labor intensive.
 +
</p></li>
 +
<li><p> We aim to characterize the relationship between synthesis rates of Spinach and transcription rates and the relationship between synthesis rates of FAP and translation rates.  
 +
</p></li>
-
<div id="colortab" class="ddcolortabs">
+
<br /><br />
-
<ul>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon" title="Home"><span>Home</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/Overview" title="Overview of the biology" rel="dropmenu1_a"><span>Overview</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/Team" title="Meet the team" ><span>The Team</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/BioBricks" title="Our submitted BioBrick<sup>TM</sup> BioBricks" rel="dropmenu1_a"><span>BioBricks</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/Notebook" title="Details of labwork, in realtime"><span>Notebook</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/Modelling" title="Modelling" rel="dropmenu2_a"><span>Modelling</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/Results" title="Results" rel="dropmenu1_a"><span>Results</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/Human_Practice" title="Human Practice" rel="dropmenu2_a"><span>Human Practice</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/Acknowledgements" title="Acknowledgements" ><span>Acknowledgements</span></a></li>
+
-
<li><a href="https://2012.igem.org/Team:Carnegie_Mellon/FAQ" title="Frequently asked questions" ><span>FAQ</span></a></li>
+
-
</ul>
+
-
</div>
+
-
<div class="ddcolortabsline">&nbsp;</div>
+
-
<div id="dropmenu1_a" class="dropmenudiv_a">
+
-
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Team">Overview</a>
+
-
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Team">Step1</a>
+
-
<a href="https://2012.igem.org/Team:Carnegie_Mellon/Team">Step2</a>
+
-
</div>
+
-
<script type="text/javascript">
+
-
//SYNTAX: tabdropdown.init("menu_id", [integer OR "auto"])
+
-
tabdropdown.init("colortab", 3)
+
-
</script>
+
-
</div>
+
-
 
+
<p><h1>
-
 
+
<a name="Project_description"></a>Project Description</h1>
-
 
+
<h3><b>Experimental</b></h3>
-
 
+
-
 
+
-
<hr />
+
-
<table id="toc" class="toc" summary="Contents"><tr><td><div id="toctitle"><h2>Contents</h2></div>
+
-
<ul>
+
-
<li class="toclevel-1"><a href="#Introduction:_Motivation_and_Background"><span class="tocnumber">1</span> <span class="toctext">Introduction: Motivation and Background</span></a></li>
+
-
<li class="toclevel-1"><a href="#Primary_Objective:_A_New_Set_of_Well-Characterized_Promoters"><span class="tocnumber">2</span> <span class="toctext">Primary Objective: A New Set of Well-Characterized Promoters</span></a></li>
+
-
<li class="toclevel-1"><a href="#Secondary_Objective:_Humanistic_Practice"><span class="tocnumber">3</span> <span class="toctext">Secondary Objective: Humanistic Practice</span></a></li>
+
-
<li class="toclevel-1"><a href="#The_Team"><span class="tocnumber">4</span> <span class="toctext">The Team</span></a></li>
+
-
<li class="toclevel-1"><a href="#Further_Considerations"><span class="tocnumber">5</span> <span class="toctext">Further Considerations</span></a></li>
+
-
</ul>
+
-
</td></tr></table><script type="text/javascript"> if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } </script>
+
-
<a name="Introduction:_Motivation_and_Background"></a><h2> <span class="mw-headline"> Introduction: Motivation and Background</span></h2>
+
-
<ul><li><b> Our primary goal is to develop new promoters that can be measured with fluorescent technology.</b>
+
-
</li><li> We seek to develop a system that will allow researchers in the field of synthetic biology to accurately measure a variety of metrics in gene expression networks including translational efficiency and transcriptional strength.
+
-
</li></ul>
+
-
<ul><li> We hypothesize that we can use Spinach (a fluorescent RNA sequence) and a FAP (fluorogen activating protein) as biosensors to reflect these metrics <i>in vivo</i> (in living cells), rather than <i>in vitro</i> (in a test tube), which can be very costly and impractical.
+
-
</li></ul>
+
-
<ul><li> We will characterize the relationship between the rates of production of Spinach and FAP and the gene's translational efficiency and transcription rate. <br />
+
-
</li></ul>
+
-
<hr />
+
-
<p><h3>
+
-
<b>Project Description</b></h3>
+
-
<h4><b>Experimental</b></h4>
+
<p>
<p>
-
The design and implementation of synthetic biological systems often require information on transcription and translation rates and on the impact of both RNA and protein levels on metabolic activities of host cells. Such information is needed when both strong and low levels of expression are desired, depending on the biologists’ goal, e.g. high production or cell localization of a protein, respectively. To date, however, quantitative information about the expression strength of a promoter is difficult to obtain due to the lack of noninvasive and quick approaches to measure the levels of RNA and protein in cells.  
+
The design and implementation of synthetic biological systems often require information on transcription and translation rates and on the impact of both RNA and protein levels on metabolic activities of host cells. Such information is needed when both strong and low levels of expression are desired, depending on the biologists’ goal, e.g., high production or single-molecule localization of a protein, respectively. To date, however, quantitative information about the expression strength of a promoter is difficult to obtain due to the lack of noninvasive and quick approaches to measure levels of RNA and protein in cells.  
</p>
</p>
<p>
<p>
-
Here, we engineer a fluorescence-based sensor that can provide information on both transcription strength and translation efficiency that is noninvasive, easily applied to a variety of promoters, and capable of providing results in a time frame that is short when compared to current technologies.  The sensor is based on the use of an RNA aptamer (termed Spinach) and a fluorogen activating protein (FAP). Both the Spinach and FAP become fluorescent in response to binding with dye molecules. The combination of FAP and Spinach will allow us to quantitatively determine relationships involving mRNA and protein, such as translational efficiency.
+
Here, we engineer a fluorescence-based biosensor that can provide information on both transcription strength and translation efficiency that is noninvasive, easily applied to a variety of promoters, and capable of providing results in a time frame that is short when compared to current technologies.  The sensor is based on the use of an RNA aptamer (termed Spinach) and a fluorogen activating protein (FAP). Both the Spinach and FAP become fluorescent in response to binding with dye molecules. The combination of FAP and Spinach will allow us to quantitatively determine relationships involving mRNA and protein, such as translational efficiency.
</p>
</p>
<p>
<p>
-
To demonstrate the utility of the sensor, we will construct and characterize several T7Lac promoters. For each of the promoters, we will measure the mRNA and protein fluorescence during synthesis and after the synthesis ceased as a function of the concentration of dyes added to the cells. The time dependent fluorescence measurements of mRNA and protein levels will be used in a model that allows one to calculate two important characteristics of gene expression, namely the polymerase per second (PoPS) and translational efficiency. Information about other characteristics of the cell, such as degradation constants for mRNA and protein, and transcriptional efficiency, will be obtained indirectly.
+
To demonstrate the utility of the sensor, we have constructed and characterized four T7Lac promoters. For each of the promoters, we have measured both mRNA and protein fluorescence over time. The time-lapse fluorescence levels of mRNA and protein were used in a mathematical model for the estimation of transcription and translation rate constants.
 +
We have submitted these promoters to the parts registry, whose strength is measured by the newly developed biosensor.
</p>
</p>
 +
<p>
<p>
-
The outcome of this project will consist of a family of promoters whose strength is measured by the newly developed sensor and it covers a relatively broad range.
+
<i><a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Overview"> Learn more here</a></i>
</p>
</p>
-
<h4><b>
+
 
 +
<h3><b>
Human Practices
Human Practices
-
</b></h4>
+
</b></h3>
<p>
<p>
-
The realization of the potential of synthetic biology depends on the number and quality of scientists making significant contributions to the field.  Hence, we plan to contribute to raising the awareness of high school students, who may become future scientists, of the interdisciplinary field synthetic biology and of the preparation one needs to become a synthetic biologist.
+
The impact of synthetic biology depends on the number and quality of scientists making significant contributions to the field.  To this end, we contributed to raising the awareness of high school students, who may become future scientists, about the interdisciplinary field of synthetic biology, and about the preparation one needs to become a synthetic biologist.
</p>
</p>
<p>
<p>
-
Specifically we will give several presentations about synthetic biology (including the iGEM competition) and our project to high school students enrolled in the Summer Academy of Math and ScienceTo bridge the natural intellectual gap between the background of a high school student and the complexity of our project, we will build and use in the demonstrations an affordable, microcontroller-based, hardware platform and associated, open-source, digital simulation software.   The combined hardware/software platform will allow the students to directly manipulate electronic components, which are formal equivalents of the Biobricks used in building our sensor, to affect the current and/or voltage, which are formally the equivalent of the PoPs and translational efficiency measured with the sensor.  The software, which is based on the same model we create for the analysis of the sensor, will ensure that the data generated by the students is physiologically accurate.
+
We decided to create teaching materials for high school students inspired by our team’s research projectOur goal was that these materials can be easily used by a science teacher in a lecture in a Biology or Chemistry course to (1) explain what Synthetic Biology is, and (2) enable the students to understand how our <a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Overview"> biosensor</a> works.  The teaching materials we have created, specifically a power point presentation and an <a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Circuit"> electronic circuit kit</a>, have become part of the Lending Library of Kits of <a href="http://www.cmu.edu/cnast/DNAZone/index"> DNAZone</a>, the outreach program of the <a href="http://www.cmu.edu/cnast/"> Center of Nucleic Acids Science and Technology (CNAST)</a> at Carnegie Mellon.  The kits in the Library are loaned to high school teachers in the Pittsburgh area to be used in teaching Math and Science.  We have also tested the kit in several demonstrations in the Summer of 2012 to high school students enrolled in the <a href="http://www.cmu.edu/enrollment/summerprogramsfordiversity/sams.html"> Summer Academy of Math and Science (SAMS)</a> at Carnegie Mellon.
</p>
</p>
 +
<p>
 +
To bridge the gap between the background of a high school student and the complexity of our project, we built an affordable, microcontroller-based, <a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Circuit"> hardware platform</a> and associated, open-source, digital simulation <a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Software"> software</a>. The combined hardware/software platform allows the students to directly manipulate electronic components, which are formal equivalents of the BioBricks used in our sensor, and to observe the effect of changing these components on the current or voltage output, which is the equivalent of the fluorescence intensity in our lab experiments. The software part of the platform includes the same model we created for the analysis of the sensor, and the GUI that facilitates the manipulation of the circuit kit.
</p>
</p>
-
<hr />
 
-
<p><h3>
 
-
<b>Promoters</b></h3>
 
-
Promoters are upstream sequences that regulate transcription. Promoters are usually short sequences and act as binding sites for a variety of different RNA polymerases. Promoters have different binding affinities based on their sequence and can be characterized in a matter of different ways. Our project looks to measure some of these properties using fluorescence measurements.
 
</p>
</p>
-
<p><h3>
+
<p>
-
<b>What is fluorescence, exactly?</b></h3>
+
<i><a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Overview"> Learn more here</a></i>
-
Fluorescence is a property of some molecules, particularly aromatic organic dyes that absorb photons at a certain wavelength and emit them at a longer, lower energy wavelength. <p>Fluorescence is described using quantum mechanics principles and organic chemistry. Five and six-member rings tend to fluoresce brightly because of electron delocalization and the properties that are associated with electron delocalization through the p-orbitals. Fluorescent molecules come in a variety of flavors and uses based on their properties, and shape. Fluorescent molecules are known as fluorophores and can take the form of organic dyes or proteins. So far, many different types of fluorophores have been discovered, developed and studied in great detail. Typically, fluorescent proteins have a fluorophore that consists of a few side chains that react and form a complex similar to that of an organic dye. For example, GFP (the most common fluorescent protein) has an HBI fluorophore. Our Spinach construct binds to a dye that derives from this fluorophore. Fluorescence of a molecule can depend on conformation, in the case of our fluorogen, malachite green, which is a conditional fluorophore, the molecule must be in a certain conformation to fluoresce, otherwise, it will absorb photons, but it will emit them very inefficiently (extremely low quantum yield). Fluorescence is a widely studied phenomena and a lot of research is involved with improving current fluorescence technologies and its applications.</p>
+
</p>
</p>
-
<p><br /><h3>
+
<br \><br \>
-
<b>What is Spinach?</b></h3>
+
-
<p><img src="https://static.igem.org/mediawiki/2012/archive/e/e4/20120620211241!Spinach_Graphic_6-20-12.jpg" alt="Spinach" align="right" height="450" width="650" /></p>
+
-
Spinach is an RNA sequence that can be expressed in cells (in this case, <i>E. coli </i>) and fluoresces green when DFHBI (an organic dye) is bound to it that can be used to quantify RNA concentration in a cell. Spinach binds to an organic dye called DFHBI which doesn't fluoresce by itself but fluoresces very brightly when it is bound to Spinach. DFHBI is chemically derived from the chromophore in GFP but is altered to increase brightness when bound to RNA. Other fluorescent RNAs have been described but many are non-specific and have many unwanted functions like cytotoxicity. Other fluorescent RNAs also are difficult to quantify because the cells' RNAses (RNA destroying enzymes) can cut out the fluorescent sequence at unpredictable times, making quantification impractical. Spinach utilizes a scaffold that derives from a tRNA sequence, which disguises the RNA so that RNAses leave it alone.  Manipulations to the sequence that Spinach is attached to allows for a variety of analyses functions. RNA can be arranged to bind to just about any small molecule in the same way that Spinach was developed (using a SELEX method) to track cellular metabolites. This allows for quantification of another important system in cells. However, in our system, Spinach is incorporated in the mRNA (between the promoter and the RBS) so mRNA is quantified. <a href="http://www.sciencemag.org/content/333/6042/642.full"> Click for more information on Spinach</a>. Spinach is the first published RNA sequence of its kind and more sequence/dye combinations are in development; as a result, in years to come, multiple genes (both RNA and protein) can be analyzed in great detail simultaneously.
+
-
<br />
+
<a name="Objective_1:_A_New_Set_of_Well-Characterized_Promoters"></a><h1> <span class="mw-headline"> Objective 1: Novel Well-Characterized Promoters </span></h1>
-
<br /><h3>
+
-
<b>What is a FAP?</b></h3>
+
-
<p><img src="https://static.igem.org/mediawiki/2012/4/4b/FAP_graphic_6-26-12.jpg" alt="FAP" align="right" height="450" width="650" /></p>
+
-
A fluorogen activating protein is a small (26-35kD) protein that derives from the variable region in an antibody. FAPs are not fluorescent unless a fluorogen (also not normally fluorescent) is added, in which case the FAP changes the conformation of the fluorogen and the complex fluoresces brightly. FAPs are currently used to tag certain proteins like actin or tubulin in mammalian cells. FAPs are not primarily expressed in<i> E. coli</i> although we have expressed certain FAPs in <i>E. coli</i>. The two main dyes that the current series of FAPs bind to are malachite green and thiazole orange; our construct uses a variant that binds to malachite green. These dyes are normally cell impermeable but can be designed to penetrate cell membranes. As a result, they were originally used to tag surface proteins. FAPs are excellent reporters because they are small proteins that are soluble and have virtually no maturation time and are highly photostable unlike traditional variants of GFP. FAP technology is widely unexplored but shows promise for new fluorescent technology. FAPs have been used to track individual molecules to <a href="http://www.photonics.com/Article.aspx?AID=45024">5nm definition as opposed to the typical 200nm</a>. Engineered dyes, called dyedrons, have been developed that increase fluorescence intensity and can allow researchers to improve on live cell imaging techniques. FAPs are genetically different and respond to different excitation wavelengths so researchers can image multiple proteins at the same time in order to understand complex biological processes.
+
-
</p>
+
<!-- Picture of fluorescence microscopy
-
<b>Why is this project important?</b><br />
+
<div class="thumb tright"><div class="thumbinner" style="width:152px;"><a href="/Image:Carnegie_Mellon-MicroMaize.jpg" class="image" title="Fluorescence Microscopy"><img alt="Fluorescence Mircroscopy" src="/wiki/images/thumb/0/08/Carnegie_Mellon-MicroMaize.jpg/150px-Carnegie_Mellon-MicroMaize.jpg" width="150" height="301" border="0" class="thumbimage" /></a>  <div class="thumbcaption"><div class="magnify"><a href="/Image:Carnegie_Mellon-MicroMaize.jpg" class="internal" title="Enlarge"><img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" /></a></div>
-
<ul>
+
Fluorescence Microscopy</div></div></div><font size="4">
-
<p><li>
+
-->
-
The ability to monitor protein production with fluorescence is a growing field that promises advances in drug development and improving quality control in drug manufacturing.</p></li>
+
 
-
<p><li>
+
<p><b>Our first objective is to develop a series of BioBricks that are well characterized based on our methods of measurement.</b></p></font>
-
Promoter strength directly affects a cell's ability to perform typical functions like divide or move. Designing a genetic circuit that will not overload the cells is key in synthetic biology.
+
-
</p></li>
+
-
<p><li>
+
-
Inducible promoters are widely used in synthetic biology but many are under-characterized.
+
-
</p></li>
+
-
<br />
+
-
</p>
+
-
<a name="Primary_Objective:_A_New_Set_of_Well-Characterized_Promoters"></a><h2> <span class="mw-headline"> Primary Objective: A New Set of Well-Characterized Promoters </span></h2>
+
-
<div class="thumb tright"><div class="thumbinner" style="width:152px;"><a href="/Image:Carnegie_Mellon-MicroMaize.jpg" class="image" title="Fluorescence Microscopy"><img alt="Fluorescence Mircroscopy" src="/wiki/images/thumb/0/08/Carnegie_Mellon-MicroMaize.jpg/150px-Carnegie_Mellon-MicroMaize.jpg" width="150" height="301" border="0" class="thumbimage" /></a>  <div class="thumbcaption"><div class="magnify"><a href="/Image:Carnegie_Mellon-MicroMaize.jpg" class="internal" title="Enlarge"><img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" /></a></div>Fluorescence Microscopy</div></div></div>
+
-
<font size="4"><p><b>Our primary objective is to develop a series of BioBricks that are well characterized based on our methods of measurement.</b></p></font>
+
-
<p>We assert that our new method of analyzing promoters can quantify certain properties such as:
+
<p>We assert that our new method of analyzing promoters can quantify certain properties such as: </p>
-
</p>
+
 
 +
<p>
<ol><li> Translational efficiency <i>in vivo </i>
<ol><li> Translational efficiency <i>in vivo </i>
-
</li><li> <i>in vivo</i> transcription rates
+
</li><li> <i>In vivo</i> transcription rates
</li><li> Promoter strength
</li><li> Promoter strength
</li><li> <i>In vivo</i> mRNA and protein half-lives in real time
</li><li> <i>In vivo</i> mRNA and protein half-lives in real time
-
</ol>
+
</ol>
 +
</p>
-
<a name="Secondary_Objective:_Humanistic_Practice"></a><h2> <span class="mw-headline"> Secondary Objective: Humanistic Practice</span></h2>
+
<br>
-
<p> <a href="https://2012.igem.org/Team:Carnegie_Mellon" class="external text" title="https://2012.igem.org/Team:Carnegie_Mellon" rel="nofollow">FAQ/Terminology</a> in engineering <i>Escherichia coli</i> to <b>monitor these variables via fluorescence</b>. Find out more about Carnegie Mellon: (<a href="http://www.cmu.edu" class="external text" title="http://www.cmu.edu" rel="nofollow">CMU Home Page</a>).
+
<p>The promoters we submit were characterized with these properties. </p>
 +
 
 +
<p>
 +
<img src="https://static.igem.org/mediawiki/2012/d/de/Ts.png" height="300" width="380" align="center"/>
 +
<img src="https://static.igem.org/mediawiki/2012/9/9b/Tl.png" height="300" width="380" >
 +
<br>
 +
<strong>Figure 1: Measured transcription (left panel) and translation (right panel) rate constants of three new promoters using a new fluorogen-activated biosensor. </strong>
 +
<br> Based on established parts, we have developed a new biosensor that can report levels of both RNA and protein in a single cell. This biosensor enables non-invasive and real-time measurements of RNA and protein expression rates. We have applied the biosensor in the characterization of three new T7Lac promoters, which yielded high quality time-lapse data of both RNA and protein levels (see details in <a href = "https://2012.igem.org/Team:Carnegie_Mellon/Met-Overview"> Methods & Results </a>). The data was used to estimate transcription and translation rate constants (see details in <a href =" https://2012.igem.org/Team:Carnegie_Mellon/Mod-Overview"> Modeling </a>).  
</p>
</p>
 +
 +
<br \><br \>
 +
 +
<a name="Objective_2:_Human_Practices"></a><h1> <span class="mw-headline"> Objective 2: Human Practices</span></h1>
 +
<p> As part of our project, we seek to intrigue high school students about synthetic biology and engineering. In this pursuit, we developed an electrical analog of our BioBricks (with a simulated microscope using LEDs and a photoresistor) to teach high school students about:
<p> As part of our project, we seek to intrigue high school students about synthetic biology and engineering. In this pursuit, we developed an electrical analog of our BioBricks (with a simulated microscope using LEDs and a photoresistor) to teach high school students about:
-
<ol><li> Biological systems and synthetic biology
+
<ol><li> Synthetic biology and its relationship to biology, science, and engineering in general
-
</li><li> Teamwork in research
+
-
</li><li> The interdisciplinary nature of synthetic biology
+
-
</li><li> Challenges in interdisciplinary work and how teams overcome these boundaries
+
</li><li> Gene expression and the central dogma of molecular biology
</li><li> Gene expression and the central dogma of molecular biology
-
</li><li> How our BioBrick can be used as a measurement system
+
</li><li> How synthetic biologists tackle real-world problems
-
</li><li> How scientists tackle real-world problems using an interactive simulation that demonstrates the use of our BioBrick and synthetic biological principles
+
</li><li> The iGEM competition and how our iGEM team's project enables one to measures the properties of promoters
 +
</li><li> The interdisciplinary nature of synthetic biology
 +
</li><li> The advantages and challenges of interdisciplinary work
</li></ol>
</li></ol>
</p>
</p>
-
<a name="The_Team"></a><h2><span class="mw-headline"> The Team</span></h2>
+
<br \><br \>
-
<p>The 2012 Carnegie Mellon University iGEM team consists of students from Biology, Electrical and Computer Engineering, Biomedical Engineering and Chemical Engineering.
+
 
-
<ul><li>Peter Wei
+
<!--
-
</li><li>Yang Choo
+
<a name="The_Team"></a><h1><span class="mw-headline"> The Team</span></h1>
-
</li><li>Jesse Salazar
+
<p>The 2012 Carnegie Mellon University iGEM team consists of students from Biological Sciences, Electrical and Computer Engineering, Biomedical Engineering and Chemical Engineering.
-
</li><li>Eric Pederson
+
<ul><li>Peter Wei (ECE, BME)
 +
</li><li>Yang Choo (ChemE, BME)
 +
</li><li>Jesse Salazar (ECE, BME)
 +
</li><li>Eric Pederson (Bio)
</li></ul>
</li></ul>
-
Advisors for the team are from the Chemistry, Biomedical Engineering, Electrical and Computer Engineering, Computational Biology, and Biology departments.  
+
Advisors for the team are from the Chemistry, Biomedical Engineering, Electrical and Computer Engineering, Computational Biology, and Biological Science Departments.  
</p>
</p>
-
<a name="Further_Considerations"></a><h2> <span class="mw-headline"> Further Considerations </span></h2>
+
<br \>
-
<p>In the pursuit of our project, as well as the biological aspects, we:
+
-
</p>
+
-
<ul><li> Considered aspects of <a href="https://2012.igem.org/Team:Carnegie_Mellon/Modelling" class="external text" title="https://2012.igem.org/Team:Carnegie_Mellon/Modelling" rel="nofollow">scale-up</a>, including the <a href="https://2012.igem.org/Team:Carnegie_Mellon" class="external text" title="https://2012.igem.org/Team:Carnegie_Mellon" rel="nofollow">ethical, legal and social implications</a> of our BioBrick,
+
-
</li><li> Programmed <a href="https://2012.igem.org/Team:Carnegie_Mellon/Software" class="external text" title="https://2012.igem.org/Team:Carnegie_Mellon/Software" rel="nofollow">a new piece of software</a> for modeling our BioBrick to students,
+
-
</li><li> <a href="https://2012.igem.org/Team:Carnegie_Mellon/Protocols" class="external text" title="https://2012.igem.org/Team:Carnegie_Mellon/Protocols" rel="nofollow">Developed and tested techniques for measuring translational efficiency and transcriptional strength,
+
-
</li><li> Participated in human practices demonstration and modeled our biological system using a programmable and interactive, electrical analog.
+
-
</li></ul>
+
-
 
+
-
<!--
+
-
NewPP limit report
+
-
Preprocessor node count: 22/1000000
+
-
Post-expand include size: 78/2097152 bytes
+
-
Template argument size: 0/2097152 bytes
+
-->
-->
-
<!-- Saved in parser cache with key 2012_igem_org:pcache:idhash:189-0!1!0!!en!2!edit=0 and timestamp 20120522052819 -->
+
 
-
<div class="printfooter">
+
<a name="Further_Considerations"></a><h1> <span class="mw-headline"> Further Considerations </span></h1>
-
Retrieved from "<a href="https://2012.igem.org/Team:Carnegie_Mellon">https://2012.igem.org/Team:Carnegie_Mellon</a>"</div>
+
<p>In the pursuit of our project we:
-
<!-- end content -->
+
<ul><li> Considered the <a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Overview" rel="nofollow">ethical, legal and social implications</a> of our BioBrick
-
<div class="visualClear"></div>
+
</li><li> Wrote <a href="https://2012.igem.org/Team:Carnegie_Mellon/Mod-Matlab" rel="nofollow"> new software</a> for modeling the performance of our BioBrick
-
</div>
+
</li><li> Developed and tested <a href="https://2012.igem.org/Team:Carnegie_Mellon/Met-Protocols" rel="nofollow">techniques for measuring translational efficiency and transcriptional strength </a>
-
    </div>
+
</li><li> Created materials for teaching high school students about synthetic biology and scientific research.  These materials included a programmable and interactive, <a href="https://2012.igem.org/Team:Carnegie_Mellon/Hum-Circuit" rel="nofollow">electrical analog of our biosensor.</a>
 +
</li></ul>
 +
</p>
 +
 
</html>
</html>
 +
{{:Team:Carnegie_Mellon/Templates/Footer}}

Latest revision as of 03:26, 27 October 2012

Image:CMU_image6.jpeg




Real-time quantitative measurement of RNA and protein levels using fluorogen-activated biosensors



Introduction: Motivation and Background

Our primary goal is to develop new promoters that can be measured with fluorescent technology.

  • We seek to develop a system that will allow researchers in the field of synthetic biology to accurately measure a variety of metrics in gene expression networks including translational efficiency and transcriptional strength.

  • We hypothesize that we can use Spinach (a fluorogen-activating RNA sequence) and a FAP (fluorogen activating protein) as biosensors to measure these gene expression metrics in vivo (in living cells), rather than in vitro (in a test tube), which can be very costly and labor intensive.

  • We aim to characterize the relationship between synthesis rates of Spinach and transcription rates and the relationship between synthesis rates of FAP and translation rates.



  • Project Description

    Experimental

    The design and implementation of synthetic biological systems often require information on transcription and translation rates and on the impact of both RNA and protein levels on metabolic activities of host cells. Such information is needed when both strong and low levels of expression are desired, depending on the biologists’ goal, e.g., high production or single-molecule localization of a protein, respectively. To date, however, quantitative information about the expression strength of a promoter is difficult to obtain due to the lack of noninvasive and quick approaches to measure levels of RNA and protein in cells.

    Here, we engineer a fluorescence-based biosensor that can provide information on both transcription strength and translation efficiency that is noninvasive, easily applied to a variety of promoters, and capable of providing results in a time frame that is short when compared to current technologies. The sensor is based on the use of an RNA aptamer (termed Spinach) and a fluorogen activating protein (FAP). Both the Spinach and FAP become fluorescent in response to binding with dye molecules. The combination of FAP and Spinach will allow us to quantitatively determine relationships involving mRNA and protein, such as translational efficiency.

    To demonstrate the utility of the sensor, we have constructed and characterized four T7Lac promoters. For each of the promoters, we have measured both mRNA and protein fluorescence over time. The time-lapse fluorescence levels of mRNA and protein were used in a mathematical model for the estimation of transcription and translation rate constants. We have submitted these promoters to the parts registry, whose strength is measured by the newly developed biosensor.

    Learn more here

    Human Practices

    The impact of synthetic biology depends on the number and quality of scientists making significant contributions to the field. To this end, we contributed to raising the awareness of high school students, who may become future scientists, about the interdisciplinary field of synthetic biology, and about the preparation one needs to become a synthetic biologist.

    We decided to create teaching materials for high school students inspired by our team’s research project. Our goal was that these materials can be easily used by a science teacher in a lecture in a Biology or Chemistry course to (1) explain what Synthetic Biology is, and (2) enable the students to understand how our biosensor works. The teaching materials we have created, specifically a power point presentation and an electronic circuit kit, have become part of the Lending Library of Kits of DNAZone, the outreach program of the Center of Nucleic Acids Science and Technology (CNAST) at Carnegie Mellon. The kits in the Library are loaned to high school teachers in the Pittsburgh area to be used in teaching Math and Science. We have also tested the kit in several demonstrations in the Summer of 2012 to high school students enrolled in the Summer Academy of Math and Science (SAMS) at Carnegie Mellon.

    To bridge the gap between the background of a high school student and the complexity of our project, we built an affordable, microcontroller-based, hardware platform and associated, open-source, digital simulation software. The combined hardware/software platform allows the students to directly manipulate electronic components, which are formal equivalents of the BioBricks used in our sensor, and to observe the effect of changing these components on the current or voltage output, which is the equivalent of the fluorescence intensity in our lab experiments. The software part of the platform includes the same model we created for the analysis of the sensor, and the GUI that facilitates the manipulation of the circuit kit.

    Learn more here



    Objective 1: Novel Well-Characterized Promoters

    Our first objective is to develop a series of BioBricks that are well characterized based on our methods of measurement.

    We assert that our new method of analyzing promoters can quantify certain properties such as:

    1. Translational efficiency in vivo
    2. In vivo transcription rates
    3. Promoter strength
    4. In vivo mRNA and protein half-lives in real time


    The promoters we submit were characterized with these properties.


    Figure 1: Measured transcription (left panel) and translation (right panel) rate constants of three new promoters using a new fluorogen-activated biosensor.
    Based on established parts, we have developed a new biosensor that can report levels of both RNA and protein in a single cell. This biosensor enables non-invasive and real-time measurements of RNA and protein expression rates. We have applied the biosensor in the characterization of three new T7Lac promoters, which yielded high quality time-lapse data of both RNA and protein levels (see details in Methods & Results ). The data was used to estimate transcription and translation rate constants (see details in Modeling ).



    Objective 2: Human Practices

    As part of our project, we seek to intrigue high school students about synthetic biology and engineering. In this pursuit, we developed an electrical analog of our BioBricks (with a simulated microscope using LEDs and a photoresistor) to teach high school students about:

    1. Synthetic biology and its relationship to biology, science, and engineering in general
    2. Gene expression and the central dogma of molecular biology
    3. How synthetic biologists tackle real-world problems
    4. The iGEM competition and how our iGEM team's project enables one to measures the properties of promoters
    5. The interdisciplinary nature of synthetic biology
    6. The advantages and challenges of interdisciplinary work



    Further Considerations

    In the pursuit of our project we:

    Image:TartanFooter.jpeg