Team:UCSF/Violacein Results
From 2012.igem.org
(One intermediate revision not shown) | |||
Line 69: | Line 69: | ||
Using linear interpolation (from the maximum absorbance at 575nm, wavelength scans above) we found that the co-culture produces 3.6199 mg/ml violacein and the total operon produces 3.5945mg/ml. While this amount is nearly equal, we believe that the production of violacein could be optimized such that it would produce much more violacein than the monoculture. | Using linear interpolation (from the maximum absorbance at 575nm, wavelength scans above) we found that the co-culture produces 3.6199 mg/ml violacein and the total operon produces 3.5945mg/ml. While this amount is nearly equal, we believe that the production of violacein could be optimized such that it would produce much more violacein than the monoculture. | ||
<br><p> | <br><p> | ||
- | |||
- | <img align="left" style="margin-top:18px; margin-left:118px;margin-right:78px;width:700px;height:350px; padding:0;" src="https://dl.dropbox.com/u/24404809/iGEM%202012/igem%202012%20website%20photos/violacein/ | + | The growth rates of strains decrease when inducer is added, as shown in the left graph. By comparing the rate of induced and uninduced growth, we can see how the cells are affected by production of their respective enzymes, and therefore how high the metabolic burden is. In the bar graph, Strain1+Strain2 (coculture) clearly is least affected by metabolic burden, showing that splitting a metabolic pathway does seem to lessen metabolic burden. <br> <p> |
+ | <img align="left" style="margin-top:18px; margin-left:118px;margin-right:78px;width:700px;height:350px; padding:0;" src="https://dl.dropbox.com/u/24404809/iGEM%202012/igem%202012%20website%20photos/violacein/vio_growth_diff_vert.jpg"> |
Latest revision as of 04:06, 4 October 2012
The growth rates of strains decrease when inducer is added, as shown in the left graph. By comparing the rate of induced and uninduced growth, we can see how the cells are affected by production of their respective enzymes, and therefore how high the metabolic burden is. In the bar graph, Strain1+Strain2 (coculture) clearly is least affected by metabolic burden, showing that splitting a metabolic pathway does seem to lessen metabolic burden.
Strain 1, which only has the first half of the enzymes necessary to produce violacein is still able to produce a green pigment. When the pigment is extracted from cells, the wavelength scan shown in dark blue is obtained.
Strain 2, which has the second half of the violacein pathway, produces no pigment. This is expected because without the first half of the pathway, no pigment can be produced.
Strain 3, which contains the entire violacein operon produces a wavelength scan similar to our standard obtained from Sigma-Aldrich, with violacein having a maximum absorbance near 575nm.
Co-Culture: Strain 1 and Strain 2 grown together (red line) produce a wavelength scan that indicates production of violacein.
Using linear interpolation (from the maximum absorbance at 575nm, wavelength scans above) we found that the co-culture produces 3.6199 mg/ml violacein and the total operon produces 3.5945mg/ml. While this amount is nearly equal, we believe that the production of violacein could be optimized such that it would produce much more violacein than the monoculture.