Team:MIT/Motivation
From 2012.igem.org
(Difference between revisions)
(65 intermediate revisions not shown) | |||
Line 3: | Line 3: | ||
<html> | <html> | ||
<head> | <head> | ||
- | </ | + | <link href="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/themes/base/jquery-ui.css" rel="stylesheet" type="text/css"/> |
- | < | + | <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.5/jquery.min.js"></script> |
+ | <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/jquery-ui.min.js"></script> | ||
+ | <script> | ||
- | + | $(document).ready(function(){ | |
- | + | document.title = "MIT iGEM - Motivation"; | |
- | + | $('#nav_motivation a').first().css('background-color','#333333'); | |
- | + | $('.col_list li').css('cursor','pointer'); | |
- | + | $('.col_list li').hover(function() { | |
- | + | $(this).css('background-color','#a3abae'); | |
- | + | }, function() { | |
- | + | $(this).css('background-color','#ffffff'); | |
- | + | }); | |
- | + | $('#accordion').accordion({autoHeight:false}); | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | $('.col_list li').click(function () { | |
- | + | var name = $(this).attr('id'); | |
- | + | window.location.href=name; | |
- | + | }); | |
- | + | ||
- | + | $('.section_page_link').click(function () { | |
+ | var url = $(this).attr('href'); | ||
+ | if (window.location.href.indexOf(url) == -1) { | ||
+ | window.location.href=$(this).attr('href'); | ||
+ | } | ||
+ | }); | ||
- | |||
- | + | }); | |
- | |||
- | + | //Scrollbar moving stuff | |
+ | $(function() { | ||
- | + | var $sidebar = $("#col_nav"), | |
+ | offset = $sidebar.offset(), | ||
+ | topPadding = 0, | ||
+ | $window = $(window); | ||
- | |||
- | |||
- | |||
- | |||
- | + | $window.scroll(function() { | |
- | + | if ($window.scrollTop() > offset.top - topPadding) { | |
- | + | $sidebar.css({'margin-top': $window.scrollTop() - offset.top + topPadding}) | |
- | + | } else { | |
- | + | $sidebar.css({'margin-top': 0}) | |
- | + | } | |
- | + | }); | |
- | + | //Moving the menu down the screen, if we jump to the middle of the page. | |
- | + | $(window).scroll(); | |
- | + | ||
- | + | /* | |
- | + | $window.scroll(function() { | |
- | + | if ($window.scrollTop() > offset.top - topPadding) { | |
- | + | $sidebar.stop().animate({ | |
- | + | marginTop: $window.scrollTop() - offset.top + topPadding, | |
- | + | }, 200); | |
- | + | } else { | |
- | + | $sidebar.stop().animate({ | |
- | + | marginTop: 0 | |
- | + | }, 200); | |
+ | } | ||
+ | }); | ||
+ | */ | ||
+ | }); | ||
- | < | + | </script> |
- | + | </head> | |
- | < | + | <body> |
- | < | + | <div id="col_center"> |
- | < | + | <div id="block-content"> |
- | + | ||
- | + | ||
- | + | ||
- | < | + | <h1>Background and Motivation</h1> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | </ | + | |
- | < | + | <h4>In the near future, biological circuits will be much more <b>modular</b> and <b>sophisticated</b> than they are now, with a ten-fold <b>smaller nucleotide footprint</b>. </h4> |
- | < | + | |
- | + | <h3>The Enabling Technology: Toehold-Mediated Strand Displacement</h3> | |
- | </ | + | |
- | < | + | <center><br/><img src="https://static.igem.org/mediawiki/2012/e/ef/MIT_Strand_Displacement_Cartoon.png"/><br/><br/></center> |
- | + | A <b>gate strand</b> and <b>output strand</b> exist as a complex that is <b>partially bound</b> through complementary Watson-Crick base-pairing within the S2 binding domain. The gate strand also contains an <b>open, unbound domain</b> called a <b>toehold</b> region, T*. An input signal strand with a free complementary toehold region, T, can bind to the toehold region on the gate strand, and subsequently displace the output strand to yield an input-gate complex and a free output signal strand. This is called a <b>toehold-mediated strand displacement reaction</b>. The output signal strand can be used as an input signal for a downstream gate-output complex, enabling sophisticated interactions which yield full logic circuits. | |
- | </ | + | |
- | </ | + | <h3>Background</h3> |
+ | |||
+ | <a href="http://www.sciencemag.org/content/332/6034/1196.abstract">Qian and Winfree (<i>Science</i> 2011)</a> utilized DNA computation to create AND and OR logic gates <i>in vitro</i>. They constructed a sophisticated binary square root circuit using these gates: | ||
+ | |||
+ | <center> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/4/4a/MIT_Curly_strands_square_root_circuit.png" width=570/> | ||
+ | <div style="text-align: right; margin-right: 8em;"><em>Image courtesy of Lulu Qian.</em></div> | ||
+ | </div> | ||
+ | </center> | ||
+ | </br> | ||
+ | </br>Each of these: | ||
+ | </br><img src="https://static.igem.org/mediawiki/2012/6/6c/MIT_Curly_strand_1.png" height=30> <img src="https://static.igem.org/mediawiki/2012/3/36/MIT_Curly_strand_2.png" height=15> | ||
+ | </br>undergoes the same <b>toehold-mediated strand displacement reaction</b>. These reactions are fully modular and can be scaled to circuits of any degree of sophistication. | ||
+ | |||
+ | <h3 id="s2">Motivation for Bringing Strand Displacement to Mammalian Synthetic Biology</h3> | ||
+ | <ul> | ||
+ | <li><b>More sophisticated circuits with smaller nucleotide footprint</b> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2012/b/bc/MIT_Transcription_versus_strand_displacement_circuits.png" width=350></center> | ||
+ | </br> Sophistication of traditional transcription-translational circuits has grown linearly over the past 10 years, while sophistication of strand-displacement circuits has grown nearly exponentially. | ||
+ | <li><b>Simple combinatorial design space</b> | ||
+ | </br>With 4 nucleotides, we can create a nearly infinite number of orthogonal sequences leading to orthogonal parts. | ||
+ | <li><b>Ease of composition</b> | ||
+ | </br>The input motif matches the output motif allowing for modular cascading reactions. | ||
+ | <li><b>Tunability</b> | ||
+ | </br>We can set arbitrary digital signal thresholds by varying the concentration of circuit species. We can also achieve signal amplification by including a fuel molecule. | ||
+ | </ul> | ||
- | < | + | <h4>RNA versus DNA</h4> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | </ | + | |
+ | An information processing system is of limited use without dynamic production. RNA is a good medium because it can be continually produced from a few initial DNA parts. As in nature, DNA acts as the information-storage medium, and RNA acts as the information-processing medium. We can transfect DNA parts into mammalian cells to co-opt existing cellular machinery to produce our RNA parts. | ||
+ | </br> | ||
+ | </br>Our RNA parts can then interact with the cell through <a href="https://2012.igem.org/Team:MIT/Sensing">sensing</a> and <a href="https://2012.igem.org/Team:MIT/Actuation">actuation</a>. Endogenous cellular RNAs can act as inputs, and we can actuate by knocking down endogenous cellular RNAs. | ||
- | </div> <!--End | + | </div><!--end block-content--> |
- | + | </div> <!--End col_center--> | |
</body> | </body> | ||
</html> | </html> |
Latest revision as of 03:55, 27 October 2012
Background and Motivation
In the near future, biological circuits will be much more modular and sophisticated than they are now, with a ten-fold smaller nucleotide footprint.
The Enabling Technology: Toehold-Mediated Strand Displacement
Background
Qian and Winfree (Science 2011) utilized DNA computation to create AND and OR logic gates in vitro. They constructed a sophisticated binary square root circuit using these gates:Image courtesy of Lulu Qian.
Motivation for Bringing Strand Displacement to Mammalian Synthetic Biology
- More sophisticated circuits with smaller nucleotide footprint
Sophistication of traditional transcription-translational circuits has grown linearly over the past 10 years, while sophistication of strand-displacement circuits has grown nearly exponentially. - Simple combinatorial design space With 4 nucleotides, we can create a nearly infinite number of orthogonal sequences leading to orthogonal parts.
- Ease of composition The input motif matches the output motif allowing for modular cascading reactions.
- Tunability We can set arbitrary digital signal thresholds by varying the concentration of circuit species. We can also achieve signal amplification by including a fuel molecule.