Team:Washington

From 2012.igem.org

(Difference between revisions)
(Undo revision 301298 by Bullzi (talk))
 
(10 intermediate revisions not shown)
Line 1: Line 1:
{{Template:Team:Washington/Templates/Top}}
{{Template:Team:Washington/Templates/Top}}
__NOTOC__
__NOTOC__
-
 
==<center>'''Overview:'''</center>==
==<center>'''Overview:'''</center>==
<p>Biological systems must often be painstakingly tuned before they will efficiently produce drugs or biofuels, degrade chemicals, or perform other useful tasks. Our team implemented broadly applicable methods to optimize biological systems through directed evolution, light-regulated gene expression, and computer aided protein design. We characterized light-inducible protein expression systems for multichromatic tuning of biological pathways. To provide an inexpensive method for tuning gene expression with light, we developed a tablet application that is freely available. We also used computer-aided design to develop proteins that more effectively bind isotypes of the flu protein Hemagglutinin. Finally, we implemented a continuous culture device (turbidostat) in order to apply directed evolution to the metabolism of ethylene glycol in E. coli. We have termed the research conducted this year “Apptogenetics” as all projects utilize purpose-built computational applications for biological research. </p>
<p>Biological systems must often be painstakingly tuned before they will efficiently produce drugs or biofuels, degrade chemicals, or perform other useful tasks. Our team implemented broadly applicable methods to optimize biological systems through directed evolution, light-regulated gene expression, and computer aided protein design. We characterized light-inducible protein expression systems for multichromatic tuning of biological pathways. To provide an inexpensive method for tuning gene expression with light, we developed a tablet application that is freely available. We also used computer-aided design to develop proteins that more effectively bind isotypes of the flu protein Hemagglutinin. Finally, we implemented a continuous culture device (turbidostat) in order to apply directed evolution to the metabolism of ethylene glycol in E. coli. We have termed the research conducted this year “Apptogenetics” as all projects utilize purpose-built computational applications for biological research. </p>

Latest revision as of 16:07, 2 September 2013

Overview:

Biological systems must often be painstakingly tuned before they will efficiently produce drugs or biofuels, degrade chemicals, or perform other useful tasks. Our team implemented broadly applicable methods to optimize biological systems through directed evolution, light-regulated gene expression, and computer aided protein design. We characterized light-inducible protein expression systems for multichromatic tuning of biological pathways. To provide an inexpensive method for tuning gene expression with light, we developed a tablet application that is freely available. We also used computer-aided design to develop proteins that more effectively bind isotypes of the flu protein Hemagglutinin. Finally, we implemented a continuous culture device (turbidostat) in order to apply directed evolution to the metabolism of ethylene glycol in E. coli. We have termed the research conducted this year “Apptogenetics” as all projects utilize purpose-built computational applications for biological research.


Plastic Degredation

Turning trash into treasure

Read More

Flu Binders

Targeting influenza - one protein at a time

Read More

Optogenetics

Shine a light (or several)

Read More

Community Outreach

See how we educated the community

Read More