Team:HUST-China/Project/LCD/Result
From 2012.igem.org
(Difference between revisions)
HUST XueYu (Talk | contribs) |
HUST XueYu (Talk | contribs) |
||
(One intermediate revision not shown) | |||
Line 37: | Line 37: | ||
<img src=" https://static.igem.org/mediawiki/2012/3/33/Hust20121-1.jpg"></img><br/> | <img src=" https://static.igem.org/mediawiki/2012/3/33/Hust20121-1.jpg"></img><br/> | ||
Figure 3-1 Agarose gel electrophoresis analysis of endoglucanase cel5A display vector colony PCR. <br/> | Figure 3-1 Agarose gel electrophoresis analysis of endoglucanase cel5A display vector colony PCR. <br/> | ||
- | 1: negative control; 2: positive control; 3: cel5A1; 4: cel5A2 5: cel5A3 | + | 1: negative control; 2: positive control; 3: cel5A1; 4: cel5A2 5: cel5A3<br/> |
<img src="https://static.igem.org/mediawiki/2012/d/da/1-2.jpg"></img><br/> | <img src="https://static.igem.org/mediawiki/2012/d/da/1-2.jpg"></img><br/> | ||
Figure 3-2 Agarose gel electrophoresis analysis of double digestion of endoglucanase cel5A by EcoRI and MluI. <br/> | Figure 3-2 Agarose gel electrophoresis analysis of double digestion of endoglucanase cel5A by EcoRI and MluI. <br/> | ||
Line 43: | Line 43: | ||
<h3>Construction of β-glucosidase bglX display vector</h3> | <h3>Construction of β-glucosidase bglX display vector</h3> | ||
- | <br/><IMG SRC="https://static.igem.org/mediawiki/2012/9/90/2-1.jpg"></IMG> | + | <br/><IMG SRC="https://static.igem.org/mediawiki/2012/9/90/2-1.jpg"></IMG><br/> |
Figure 4-1 Agarose gel electrophoresis analysis of β-glucosidase bglX-pMD18-T colony PCR.<BR/> | Figure 4-1 Agarose gel electrophoresis analysis of β-glucosidase bglX-pMD18-T colony PCR.<BR/> | ||
1: bglX-pMD18-T1; 2: bglX-pMD18-T2; 3: bglX-pMD18-T3; 4: bglX-pMD18-T4; 5: bglX-pMD18-T5; 6: bglX-pMD18-T6; 7: bglX-pMD18-T7; 8: bglX-pMD18-T8; 9: negative control; 10: positive control<BR/> | 1: bglX-pMD18-T1; 2: bglX-pMD18-T2; 3: bglX-pMD18-T3; 4: bglX-pMD18-T4; 5: bglX-pMD18-T5; 6: bglX-pMD18-T6; 7: bglX-pMD18-T7; 8: bglX-pMD18-T8; 9: negative control; 10: positive control<BR/> | ||
Line 80: | Line 80: | ||
- | <h3></h3 | + | <h3>Construction of β-xylosidase Ruxyn display vector plasmid</h3> |
- | + | <img src="https://static.igem.org/mediawiki/2012/a/a0/4-1.jpg"></img><br/> | |
- | <img src=""></img> | + | Figure 6-1 Agarose gel electrophoresis analysis of β-xylosidase Ruxyn-pMD18-T colony PCR.<br/> |
+ | 1: Ruxyn-pMD18-T1; 2: Ruxyn-pMD18-T2; 3: Ruxyn-pMD18-T3; 4: Ruxyn-pMD18-T4; 5: Ruxyn-pMD18-T5; 6: Ruxyn-pMD18-T6; 7: Ruxyn-pMD18-T7; 8: Ruxyn-pMD18-T8; 9: negative control; 10: positive control<br/> | ||
- | <h3></h3> | + | <img src="https://static.igem.org/mediawiki/2012/8/88/4-2.jpg"></img><br/> |
- | <img src=""></img> | + | Figure 6-2 Agarose gel electrophoresis analysis of double digestion of β-xylosidase Ruxyn-pMD18-T by EcoRI and MluI.<br/> |
+ | 1: bglX-pMD18-T1; 2: bglX-pMD18-T2; 3: bglX-pMD18-T3; 4: bglX-pMD18-T4; 5: bglX-pMD18-T5; 6: bglX-pMD18-T6; 7: Ruxyn-pMD18-T1; 8: Ruxyn-pMD18-T2; 9: Ruxyn-pMD18-T3; 10: xyn-pMD18-T1; 11: xyn-pMD18-T2; 12: xyn-pMD18-T3<br/> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2012/b/b1/4-3.jpg"></img><br/> | ||
+ | Figure 6-3 Agarose gel electrophoresis analysis of β-xylosidase Ruxyn-pPIC9k colony PCR.<br/> | ||
+ | 1: negative control; 2: positive control; 3: xyn-pPICZXFα3; 4: xyn-pPICZXFα2; 5: xyn-pPICZXFα1; 6: negative control; 7: positive control; 8: Ruxyn-pPIC9k3; 9: Ruxyn-pPIC9k2; 10: Ruxyn-pPIC9k1<br/> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/7/75/4-4.jpg"></img><br/> | ||
+ | Figure 6-4 Agarose gel electrophoresis analysis of double digestion of β-xylosidase Ruxyn-pPIC9k by EcoRI and MluI.<br/> | ||
+ | 1: Ruxyn-pPIC9k1<br/> | ||
+ | |||
+ | |||
+ | |||
+ | <h3>Standardization of Pichia pastoris secretory vector pPICZα</h3> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/d/d4/5-1.jpg"></img><br/> | ||
+ | Figure 7-1 Agarose gel electrophoresis analysis of standardized secretory vector pPICZα colony PCR.<br/> | ||
+ | 1: negative control; 2: positive control; 3: cel5A-pPICZα6; 4: cel5A-pPICZα5; 5: cel5A-pPICZα4; 6: cel5A-pPICZα3; 7: cel5A-pPICZα2; 8: cel5A-pPICZα1<br/> | ||
+ | |||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2012/3/3d/5-2.jpg"></img><br/> | ||
+ | Figure 7-2 Agarose gel electrophoresis analysis of double digestion of standardized secretory vector pPICZα by EcoRI and PstI.<br/> | ||
+ | 1: cel5A-pPICZα1; 2: cel5A-pPICZα2; 3: cel5A-pPICZα3<br/> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h3>Construction of Lignin peroxidase(LiP) BBa_K500000, Mn peroxidase(MnP) BBa_K500001, laccase BBa_K500002, Glyoxal oxidase(GLOX) BBa_K500003 secretory vectors</h3> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/a/af/6-1.jpg"></img><br/> | ||
+ | Figure 8-1 Agarose gel electrophoresis analysis of LiP BBa_K500000 and MnP BBa_K500001 secretory vectors colony PCR.<br/> | ||
+ | 1: BBa_K500000-1; 2: BBa_K500000-2; 3: BBa_K500000-3; 4: BBa_K500000-4; 5: BBa_K500000-5; 6: BBa_K500000-6; 7: BBa_K500000-7; 8: BBa_K500000-8; 9: BBa_K500000-9; 10: BBa_K500000-10; 11: BBa_K500001-1; 12: BBa_K500001-2; 13: BBa_K500001-3; 14: BBa_K500001-4; 15: BBa_K500001-5; 16: BBa_K500001-6; 17: BBa_K500001-7; 18: BBa_K500001-8; 19: BBa_K500001-9; 20: BBa_K500001-10; 21: BBa_K500001-11; 22: negative control; 23: positive control<br/> | ||
- | + | <img src="https://static.igem.org/mediawiki/2012/0/03/6-2.jpg"></img><br/> | |
- | <img src=""></img> | + | Figure 8-2 Agarose gel electrophoresis analysis of GLOX BBa_K500003 secretory vector colony PCR.<br/> |
- | < | + | 1: BBa_K500003-1; 2: BBa_K500003-2; 3: BBa_K500003-3; 4: BBa_K500003-4; 5: BBa_K500003-5; 6: BBa_K500003-6; 7: BBa_K500003-7; 8: positive control; 9: negative control<br/> |
- | < | + | |
- | + | <img src="https://static.igem.org/mediawiki/2012/2/20/6-3.jpg"></img><br/> | |
- | <img src=""></img> | + | Figure 8-3 Agarose gel electrophoresis analysis of double digestion of LiP BBa_K500000 and MnP BBa_K500001 secretory vectors by EcoRI and PstI.<br/> |
+ | 1: BBa_K500000-1; 2: BBa_K500000-2; 3: BBa_K500000-3; 4: BBa_K500000-4; 5: BBa_K500001-1; 6: BBa_K500001-2; 7: BBa_K500001-3; 8: BBa_K500001-4<br/> | ||
- | + | <img src="https://static.igem.org/mediawiki/2012/4/41/6-4.jpg"></img><br/> | |
- | <img src=""></img> | + | Figure 8-4 Agarose gel electrophoresis analysis of double digestion of GLOX BBa_K500003 secretory vector by EcoRI and PstI.<br/> |
+ | 1: BBa_K500003-1; 2: BBa_K500003-2; 3: BBa_K500003-3; 4: BBa_K500003-4<br/> | ||
- | <h3></h3> | + | <h3>Point mutation and standardization of xyn</h3> |
- | <img src=""></img> | + | <img src="https://static.igem.org/mediawiki/2012/a/a4/9-1.jpg"></img><br/> |
+ | Figure 9-1 Agarose gel electrophoresis analysis of point mutation of xyn and standardized xyn-pMD18-T colony PCR.<br/> | ||
+ | 1: negative control; 2: xyn-pMD18-T1; 3: xyn-pMD18-T2; 4: xyn-pMD18-T3; 5: xyn-pMD18-T4; 6: xyn-pMD18-T5; 7: xyn-pMD18-T6; 8: xyn-pMD18-T7; 9: xyn-pMD18-T8; 10: positive control<br/> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/d/d5/9-2.jpg"> | ||
+ | Figure 9-2 Agarose gel electrophoresis analysis of point mutation of xyn and double digestion of standardized xyn-pMD18-T by EcoRI and PstI.<br/> | ||
+ | 1: xyn-pMD18-T7; 2: xyn-pMD18-T6; 3: xyn-pMD18-T5; 4: xyn-pMD18-T4; 5: xyn-pMD18-T3; 6: xyn-pMD18-T2; 7: xyn-pMD18-T1<br/> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/0/0c/9-3.jpg"></img><br/> | ||
+ | Figure 9-3 Agarose gel electrophoresis analysis of point mutation of xyn and standardized xyn-pSB1C3 colony PCR.<br/> | ||
+ | 1: negative control; 2: positive control; 3: xyn-pSB1C310; 4: xyn-pSB1C39; 5: xyn-pSB1C38; 6: xyn-pSB1C37; 7: xyn-pSB1C36; 8: xyn-pSB1C35; 9: xyn-pSB1C34; 10: xyn-pSB1C33; 11: xyn-pSB1C32; 12: xyn-pSB1C31<br/> | ||
- | + | <img src="https://static.igem.org/mediawiki/2012/d/df/Hust201210.jpg"></img><br/> | |
- | <img src=""></img> | + | Figure 10 Sequencing result analysis of point mutation and standardization of xyn. A=>G<br/> |
Latest revision as of 03:48, 27 September 2012
HUST CHINA
Result
Fig. 1 Immunofluorescence labeling of transformed cells: green fluorescence corresponds to cells labeled with Mouse Anti HA-Tag Polyclonal antibody and (Fluorescein (FITC)–conjugated Affinipure Goat Anti-Mouse IgG(H+L), and red fluorescence corresponds to cells labeled with Rabbit Anti Flag-Tag Polyclonal antibody and Goat Anti Rabbit RPE Polyclonal antibody.
Immunofluorescence analysis of β-glucosidase surface display Pichia pastoris using flow cytometry.
We fused HA-tag with N-terminal of bglX gene on ZXFα-bglX vector. Label cells with Mouse Anti HA-Tag Polyclonal antibody and Fluorescein (FITC)–conjugated Affinipure Goat Anti-Mouse IgG(H+L). Result of flow cytometry analysis is as follows: fluorescence intensity x-mean value of Pichia pastoris with pPICZα empty vector is 0.306, with bglX-ZXFα is 23.4.Fig. 2-1 Left: pPICZα negative control (x-mean: 0.306/1.17); Right: bglX (x-mean: 23.4/23.6)
Immunofluorescence analysis of endoxylanase surface display Pichia pastoris using flow cytometry.
We fused HA-tag with N-terminal of xyn gene on ZXFα-xyn vector. Label cells with Mouse Anti HA-Tag Polyclonal antibody and Fluorescein (FITC)–conjugated Affinipure Goat Anti-Mouse IgG(H+L). Result of flow cytometry analysis is as follows: fluorescence intensity x-mean value of Pichia pastoris with pPICZα empty vector is 0.62, with xyn-ZXFα is 67.Fig. 2-2 Left: pPICZα negative control (x-mean: 0.62/4.31); Right: xyn (x-mean: 67/67.6)
Immunofluorescence analysis of β-xylosidase Ruxyn surface display Pichia pastoris using flow cytometry.
We fused FLAG-tag with N-terminal of Ruxyn gene on Ruxyn-pPIC9k vector. Label cells with Rabbit Anti Flag-Tag Polyclonal antibody and Goat Anti Rabbit RPE Polyclonal antibody. Result of flow cytometry analysis is as follows: fluorescence intensity x-mean value of Pichia pastoris with pPIC9k empty vector is 1.14, with Ruxyn-pPIC9k is 8.56.Fig. 2-3 Left: pPIC9k negative control (x-mean: 1.14/13.4); Right: Ruxyn (x-mean: 8.56/19.9)
Immunofluorescence analysis of endoglucanase cel5A surface display Pichia pastoris using flow cytometry.
We fused FLAG-tag with N-terminal of cel5A gene on cel5A-pPIC9k vector. Label cells with Rabbit Anti Flag-Tag Polyclonal antibody and Goat Anti Rabbit RPE Polyclonal antibody. Result of flow cytometry analysis is as follows: fluorescence intensity x-mean value of Pichia pastoris with pPIC9k empty vector is 1.14, with cel5A-pPIC9k is 5.55.Fig. 2-4 Left: pPIC9k negative control (x-mean: 1.14/13.4); Right: cel5A (x-mean: 5.55/16.5)
Construction of endoglucanase cel5A display vector
Figure 3-1 Agarose gel electrophoresis analysis of endoglucanase cel5A display vector colony PCR.
1: negative control; 2: positive control; 3: cel5A1; 4: cel5A2 5: cel5A3
Figure 3-2 Agarose gel electrophoresis analysis of double digestion of endoglucanase cel5A by EcoRI and MluI.
1: cel5A1; 2: cel5A2
Construction of β-glucosidase bglX display vector
Figure 4-1 Agarose gel electrophoresis analysis of β-glucosidase bglX-pMD18-T colony PCR.
1: bglX-pMD18-T1; 2: bglX-pMD18-T2; 3: bglX-pMD18-T3; 4: bglX-pMD18-T4; 5: bglX-pMD18-T5; 6: bglX-pMD18-T6; 7: bglX-pMD18-T7; 8: bglX-pMD18-T8; 9: negative control; 10: positive control
Figure 4-2 Agarose gel electrophoresis analysis of double digestion of β-glucosidase bglX-pMD18-T by NheI and XhoI.
1: bglX-pMD18-T1; 2: bglX-pMD18-T2; 3: bglX-pMD18-T3; 4: bglX-pMD18-T4; 5: bglX-pMD18-T5; 6: bglX-pMD18-T6; 7: Ruxyn-pMD18-T1; 8: Ruxyn-pMD18-T2; 9: Ruxyn-pMD18-T3; 10: xyn-pMD18-T1; 11: xyn-pMD18-T2; 12: xyn-pMD18-T3
Since bglX gene (2280bp) and pMD18-T vector (2692bp) have similar lengths, it is difficult to discriminate the two from the result.
Figure 4-3 Agarose gel electrophoresis analysis of β-glucosidase bglX-pPICZXFα colony PCR.
1: bglX-pPICZXFα1; 2: bglX-pPICZXFα2; 3: bglX-pPICZXFα3; 4: positive control; 5: negative control
Figure 4-4 Agarose gel electrophoresis of double digestion of β-glucosidase bglX-pPICZXFα using NheI and XhoI.
1: bglX-pPICZXFα1; 2: bglX-pPICZXFα2; 3: bglX-pPICZXFα3
Construction of xylanase xyn display vector
Figure 5-1 Agarose gel electrophoresis analysis of endoxylanase xyn-pMD18-T colony PCR.
1: Ruxyn-pMD18-T1; 2: Ruxyn-pMD18-T2; 3: Ruxyn-pMD18-T3; 4: Ruxyn-pMD18-T4; 5: Ruxyn-pMD18-T5; 6: Ruxyn-pMD18-T6; 7: Ruxyn-pMD18-T7; 8: Ruxyn-pMD18-T8; 9: negative control; 10: positive control
Figure 5-2 Agarose gel electrophoresis analysis of double digestion of endoxylanase xyn-pMD18-T by NheI and XhoI.
1: bglX-pMD18-T1; 2: bglX-pMD18-T2; 3: bglX-pMD18-T3; 4: bglX-pMD18-T4; 5: bglX-pMD18-T5; 6: bglX-pMD18-T6; 7: Ruxyn-pMD18-T1; 8: Ruxyn-pMD18-T2; 9: Ruxyn-pMD18-T3; 10: xyn-pMD18-T1; 11: xyn-pMD18-T2; 12: xyn-pMD18-T3
Figure 5-3 Agarose gel electrophoresis analysis of endoxylanase xyn-pPICZXFα colony PCR.
1: negative control; 2: positive control; 3: xyn-pPICZXFα3; 4: xyn-pPICZXFα2; 5: xyn-pPICZXFα1
Figure 5-4 Agarose gel electrophoresis analysis of double digestion of endoxylanase xyn-pPICZXFα by NheI and XhoI.
1: bglX-pPICZXFα1; 2: bglX-pPICZXFα2; 3: bglX-pPICZXFα3; 4: Ruxyn-pPIC9k1; 5: xyn-pMD18-T1; 6: xyn-pMD18-T2; 7: xyn-pMD18-T3
Construction of β-xylosidase Ruxyn display vector plasmid
Figure 6-1 Agarose gel electrophoresis analysis of β-xylosidase Ruxyn-pMD18-T colony PCR.
1: Ruxyn-pMD18-T1; 2: Ruxyn-pMD18-T2; 3: Ruxyn-pMD18-T3; 4: Ruxyn-pMD18-T4; 5: Ruxyn-pMD18-T5; 6: Ruxyn-pMD18-T6; 7: Ruxyn-pMD18-T7; 8: Ruxyn-pMD18-T8; 9: negative control; 10: positive control
Figure 6-2 Agarose gel electrophoresis analysis of double digestion of β-xylosidase Ruxyn-pMD18-T by EcoRI and MluI.
1: bglX-pMD18-T1; 2: bglX-pMD18-T2; 3: bglX-pMD18-T3; 4: bglX-pMD18-T4; 5: bglX-pMD18-T5; 6: bglX-pMD18-T6; 7: Ruxyn-pMD18-T1; 8: Ruxyn-pMD18-T2; 9: Ruxyn-pMD18-T3; 10: xyn-pMD18-T1; 11: xyn-pMD18-T2; 12: xyn-pMD18-T3
Figure 6-3 Agarose gel electrophoresis analysis of β-xylosidase Ruxyn-pPIC9k colony PCR.
1: negative control; 2: positive control; 3: xyn-pPICZXFα3; 4: xyn-pPICZXFα2; 5: xyn-pPICZXFα1; 6: negative control; 7: positive control; 8: Ruxyn-pPIC9k3; 9: Ruxyn-pPIC9k2; 10: Ruxyn-pPIC9k1
Figure 6-4 Agarose gel electrophoresis analysis of double digestion of β-xylosidase Ruxyn-pPIC9k by EcoRI and MluI.
1: Ruxyn-pPIC9k1
Standardization of Pichia pastoris secretory vector pPICZα
Figure 7-1 Agarose gel electrophoresis analysis of standardized secretory vector pPICZα colony PCR.
1: negative control; 2: positive control; 3: cel5A-pPICZα6; 4: cel5A-pPICZα5; 5: cel5A-pPICZα4; 6: cel5A-pPICZα3; 7: cel5A-pPICZα2; 8: cel5A-pPICZα1
Figure 7-2 Agarose gel electrophoresis analysis of double digestion of standardized secretory vector pPICZα by EcoRI and PstI.
1: cel5A-pPICZα1; 2: cel5A-pPICZα2; 3: cel5A-pPICZα3
Construction of Lignin peroxidase(LiP) BBa_K500000, Mn peroxidase(MnP) BBa_K500001, laccase BBa_K500002, Glyoxal oxidase(GLOX) BBa_K500003 secretory vectors
Figure 8-1 Agarose gel electrophoresis analysis of LiP BBa_K500000 and MnP BBa_K500001 secretory vectors colony PCR.
1: BBa_K500000-1; 2: BBa_K500000-2; 3: BBa_K500000-3; 4: BBa_K500000-4; 5: BBa_K500000-5; 6: BBa_K500000-6; 7: BBa_K500000-7; 8: BBa_K500000-8; 9: BBa_K500000-9; 10: BBa_K500000-10; 11: BBa_K500001-1; 12: BBa_K500001-2; 13: BBa_K500001-3; 14: BBa_K500001-4; 15: BBa_K500001-5; 16: BBa_K500001-6; 17: BBa_K500001-7; 18: BBa_K500001-8; 19: BBa_K500001-9; 20: BBa_K500001-10; 21: BBa_K500001-11; 22: negative control; 23: positive control
Figure 8-2 Agarose gel electrophoresis analysis of GLOX BBa_K500003 secretory vector colony PCR.
1: BBa_K500003-1; 2: BBa_K500003-2; 3: BBa_K500003-3; 4: BBa_K500003-4; 5: BBa_K500003-5; 6: BBa_K500003-6; 7: BBa_K500003-7; 8: positive control; 9: negative control
Figure 8-3 Agarose gel electrophoresis analysis of double digestion of LiP BBa_K500000 and MnP BBa_K500001 secretory vectors by EcoRI and PstI.
1: BBa_K500000-1; 2: BBa_K500000-2; 3: BBa_K500000-3; 4: BBa_K500000-4; 5: BBa_K500001-1; 6: BBa_K500001-2; 7: BBa_K500001-3; 8: BBa_K500001-4
Figure 8-4 Agarose gel electrophoresis analysis of double digestion of GLOX BBa_K500003 secretory vector by EcoRI and PstI.
1: BBa_K500003-1; 2: BBa_K500003-2; 3: BBa_K500003-3; 4: BBa_K500003-4
Point mutation and standardization of xyn
Figure 9-1 Agarose gel electrophoresis analysis of point mutation of xyn and standardized xyn-pMD18-T colony PCR.
1: negative control; 2: xyn-pMD18-T1; 3: xyn-pMD18-T2; 4: xyn-pMD18-T3; 5: xyn-pMD18-T4; 6: xyn-pMD18-T5; 7: xyn-pMD18-T6; 8: xyn-pMD18-T7; 9: xyn-pMD18-T8; 10: positive control
Figure 9-2 Agarose gel electrophoresis analysis of point mutation of xyn and double digestion of standardized xyn-pMD18-T by EcoRI and PstI.
1: xyn-pMD18-T7; 2: xyn-pMD18-T6; 3: xyn-pMD18-T5; 4: xyn-pMD18-T4; 5: xyn-pMD18-T3; 6: xyn-pMD18-T2; 7: xyn-pMD18-T1
Figure 9-3 Agarose gel electrophoresis analysis of point mutation of xyn and standardized xyn-pSB1C3 colony PCR.
1: negative control; 2: positive control; 3: xyn-pSB1C310; 4: xyn-pSB1C39; 5: xyn-pSB1C38; 6: xyn-pSB1C37; 7: xyn-pSB1C36; 8: xyn-pSB1C35; 9: xyn-pSB1C34; 10: xyn-pSB1C33; 11: xyn-pSB1C32; 12: xyn-pSB1C31
Figure 10 Sequencing result analysis of point mutation and standardization of xyn. A=>G
.