Team:ZJU-China/project.htm
From 2012.igem.org
(Difference between revisions)
(57 intermediate revisions not shown) | |||
Line 82: | Line 82: | ||
display: inline; | display: inline; | ||
} | } | ||
+ | #content a.parts, | ||
+ | #content a.parts:hover | ||
+ | { | ||
+ | color: #8104B7; | ||
+ | display: inline; | ||
+ | } | ||
+ | |||
#content a:link, | #content a:link, | ||
#content a:visited | #content a:visited | ||
Line 119: | Line 126: | ||
font-family: Arial, sans-serif; | font-family: Arial, sans-serif; | ||
color: black; | color: black; | ||
+ | font-size: 16px; | ||
+ | padding: 0px 10px; | ||
margin: 0; | margin: 0; | ||
- | |||
align: justify; | align: justify; | ||
+ | } | ||
+ | /*******************************************/ | ||
+ | p.fig{ | ||
+ | color: #573D01; | ||
+ | padding: 15px 15px; | ||
+ | font-size: 15.5px; | ||
+ | font-family: "Calibri","sans-serif"; | ||
+ | align: justify; | ||
+ | } | ||
+ | p.ref{ | ||
+ | color: black; | ||
+ | padding: 15px 15px; | ||
+ | font-size: 15.5px; | ||
+ | font-family: "Calibri","sans-serif"; | ||
+ | align: justify; | ||
+ | } | ||
+ | b.orange{ | ||
+ | color: #FF8000; | ||
+ | font-style:italic; | ||
+ | } | ||
+ | |||
+ | h5{ | ||
+ | font-size: 16px; | ||
+ | } | ||
+ | |||
+ | table,th,td{ | ||
+ | background-color: transparent; | ||
+ | border:2px solid #634201; | ||
+ | font-size:15px; | ||
+ | border-collapse:collapse; | ||
+ | } | ||
+ | table.tm,td.tm{ | ||
+ | background-color: transparent; | ||
+ | border:0px; | ||
+ | } | ||
+ | |||
+ | .projectNav a { | ||
+ | font-size: 18px; | ||
+ | font-weight: bold; | ||
+ | padding: 1px 5px; | ||
+ | } | ||
+ | |||
+ | .projectNavFloat { | ||
+ | float: left; | ||
+ | padding-right: 0px; | ||
} | } | ||
Line 288: | Line 341: | ||
<!--Content Goes Here--> | <!--Content Goes Here--> | ||
- | <p align="justify">In cells, engineered multi-enzyme pathways are common and are often physically and spatially organized, thus leading to the high output efficiency. But engineered synthetic pathways utilizing non-homologous enzymes often suffer from low efficiency of production caused by relative lack of spatial organization. RNA scaffold is designed to co-localize enzymes through interactions between binding domains on the scaffold and target peptides fused to each enzyme in engineered biological pathways in vivo. The scaffold allows efficient channeling of substrates to products over several enzymatic steps by limiting the diffusion of intermediates thus providing a bright future for solving the problem.</p> | + | <p align="justify">In cells, engineered multi-enzyme pathways are common and are often physically and spatially organized, thus leading to the high output efficiency. But engineered synthetic pathways utilizing non-homologous enzymes often suffer from low efficiency of production caused by relative lack of spatial organization. <b class="orange">RNA scaffold is designed to co-localize enzymes through interactions between binding domains on the scaffold and target peptides fused to each enzyme in engineered biological pathways <i>in vivo</i></b>. The scaffold allows <b class="orange">efficient channeling of substrates to products</b> over several enzymatic steps by <b class="orange">limiting the diffusion of intermediates</b> thus providing a bright future for solving the problem.</p> |
<p align="justify"> </p> | <p align="justify"> </p> | ||
- | <p align="justify">ZJU-China aims to design and realize tunable RNA scaffolds to accelerate biological pathways and control them on and off. In order to achieve the object, we added an aptamer structure on RNA scaffold as a switch to regulate biological pathways by micromolecular ligands. Then we can control the all-or-none binding relationship between the enzymes and the scaffold by the absence and the presence of a special ligand. </p> | + | <p align="justify">ZJU-China aims to design and realize tunable RNA scaffolds to accelerate biological pathways and control them on and off. In order to achieve the object, we added an aptamer structure on RNA scaffold as a switch to regulate biological pathways by micromolecular ligands. Then we can <b class="orange">control the all-or-none binding relationship</b> between the enzymes and the scaffold by the absence and the presence of a special ligand. </p> |
<p align="justify"> </p> | <p align="justify"> </p> | ||
<p align="justify">We demonstrated RNA scaffold do make the split GFPs get closer and fluoresce. As was expected, the riboscaffold with a theophylline aptamer can be regulated by theophylline in the range of 0-0.5mM IPTG. A scaffold library was also desired. By changing the sequence of MS2 aptamer binding site, we made the fluorescent decreased. The mutations with different arm length decrease the fluorescent intensity of split GPF by extending the distance between two split GFP parts FA and FB. It provides a series of half-on scaffolds. </p> | <p align="justify">We demonstrated RNA scaffold do make the split GFPs get closer and fluoresce. As was expected, the riboscaffold with a theophylline aptamer can be regulated by theophylline in the range of 0-0.5mM IPTG. A scaffold library was also desired. By changing the sequence of MS2 aptamer binding site, we made the fluorescent decreased. The mutations with different arm length decrease the fluorescent intensity of split GPF by extending the distance between two split GFP parts FA and FB. It provides a series of half-on scaffolds. </p> | ||
Line 305: | Line 358: | ||
<!--Content Goes Here--> | <!--Content Goes Here--> | ||
- | <p align="justify">In cells, engineered multi-enzyme pathways are common and are often physically and spatially organized, thus leading to the high output efficiency. But engineered synthetic pathways utilizing non-homologous enzymes often suffer from low efficienty of production caused by relative lack of spatial organization. Thus important issue lies in the method to increase the efficiency of the multi-enzyme pathways. </p> | + | <p align="justify">In cells, engineered multi-enzyme pathways are common and are often physically and spatially organized, thus leading to the high output efficiency. But engineered synthetic pathways utilizing non-homologous enzymes often suffer from low efficienty of production caused by relative lack of spatial organization. Thus important issue lies in the method to <b class="orange">increase the efficiency of the multi-enzyme pathways</b>. </p> |
<p align="justify"> </p> | <p align="justify"> </p> | ||
- | <p align="justify">Protein scaffolds can be designed to make enzymes closed through interactions between binding domains on the scaffold and target peptides fused to each enzyme. However, protein scaffold is usually large, has limit binding sites, and is hard to be engineered in architecture. DNA can be designed to self-assemble in vitro into many and varied nanostructures. However, DNA scaffold is hard to be controlled and might cause some potential problems in vivo. By contrast, RNA scaffold shows great advantages. For instance, RNA is more flexible, whose structures are varied, thus leading to their ease to splice. RNA scaffold is able to be controlled and has a satisfactory regulating efficiency. RNA scaffold works fast, because it doesn’t need translation like protein scaffold. Camille J. Delebecque and his colleagues have designed and assembled RNA structures and used them to speed up the reaction of hydrogen production. And that is what our project based on.</p> | + | <p align="justify">Protein scaffolds can be designed to make enzymes closed through interactions between binding domains on the scaffold and target peptides fused to each enzyme. However, protein scaffold is usually large, has limit binding sites, and is hard to be engineered in architecture. DNA can be designed to self-assemble in vitro into many and varied nanostructures. However, DNA scaffold is hard to be controlled and might cause some potential problems <i>in vivo</i>. By contrast, RNA scaffold shows great advantages. For instance, <b class="orange">RNA is more flexible</b>, whose structures are varied, thus leading to their ease to splice. RNA scaffold is able <b class="orange">to be controlled</b> and has a satisfactory regulating efficiency</b>. RNA scaffold <b class="orange">works fast</b>, because it doesn’t need translation like protein scaffold. Camille J. Delebecque and his colleagues have designed and assembled RNA structures and used them to speed up the reaction of hydrogen production. And that is what our project based on.</p> |
<p align="justify"> </p> | <p align="justify"> </p> | ||
<img src="https://static.igem.org/mediawiki/2012/b/b7/Zju_Backround_syn_and_bio.png" width="700px" /> | <img src="https://static.igem.org/mediawiki/2012/b/b7/Zju_Backround_syn_and_bio.png" width="700px" /> | ||
<p align="justify"> </p> | <p align="justify"> </p> | ||
- | <p align="justify">Fig.1 The function of binding enzymes together of RNA scaffold illustrated by comic. The yellow girl is called “Syn”, the blue boy “Bio”. They represent non-homologous enzymes utilized in engineered synthetic pathways. Usually, they are far away from each other in E.coli, due to lack of spatial organization. But when RNA scaffold designed comes into E.coli, enzymes can be co-localized through interaction between binding domains on scaffold and target peptides fused each enzymes. That is to say, Syn and Bio can live together!</p> | + | <p class="fig" align="justify"><b>Fig.1</b> The function of binding enzymes together of RNA scaffold illustrated by comic. The yellow girl is called “Syn”, the blue boy “Bio”. They represent non-homologous enzymes utilized in engineered synthetic pathways. Usually, they are far away from each other in E.coli, due to lack of spatial organization. But when RNA scaffold designed comes into E.coli, enzymes can be co-localized through interaction between binding domains on scaffold and target peptides fused each enzymes. That is to say, Syn and Bio can live together!</p> |
<p align="justify"> </p> | <p align="justify"> </p> | ||
Line 326: | Line 379: | ||
<h2>Design</h2> | <h2>Design</h2> | ||
<p align="justify"> </p> | <p align="justify"> </p> | ||
- | <img src="https://static.igem.org/mediawiki/2012/d/dc/ZJU_PROJECT_S0_Scaffold_d.jpg" width=" | + | <!-----------Figure!!!!--------------> |
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/d/dc/ZJU_PROJECT_S0_Scaffold_d.jpg" width="500px" /> | ||
<p> </p> | <p> </p> | ||
- | <p align="justify">Fig.1 How RNA scaffold works. FA and FB represent two halves of EGFP. FA and MS2 are connected with a linker of 30bp. FB and PP7 did the same. The purple scaffold is scaffold D0. MS2 and PP7 can specifically bind to two stem-loops on scaffold, thus FA and FB get closer and fluoresce under excitation of 480nm.</p> | + | <p class="fig" align="justify"><b>Fig.1</b> How RNA scaffold works. FA and FB represent two halves of EGFP. FA and MS2 are connected with a linker of 30bp. FB and PP7 did the same. The purple scaffold is scaffold D0. MS2 and PP7 can specifically bind to two stem-loops on scaffold, thus FA and FB get closer and fluoresce under excitation of 480nm.</p> |
<p> </p> | <p> </p> | ||
+ | </div> | ||
<h2>Materials and Methods</h2> | <h2>Materials and Methods</h2> | ||
<p> </p> | <p> </p> | ||
Line 335: | Line 391: | ||
<p align="justify">pCJDFA and pCJDFB respectively comprising the gene of half split EGFP (fragment A and fragment B) and MS2 or PP7 protein were constructed by overlap extension PCR. (See the Overlap PCR protocal) Genes MS2, PP7 and pCJDD0 are provided by Dr. Camille J. Delebecque. pEGFP is provided by Prof. Jianzhong Shao. </p> | <p align="justify">pCJDFA and pCJDFB respectively comprising the gene of half split EGFP (fragment A and fragment B) and MS2 or PP7 protein were constructed by overlap extension PCR. (See the Overlap PCR protocal) Genes MS2, PP7 and pCJDD0 are provided by Dr. Camille J. Delebecque. pEGFP is provided by Prof. Jianzhong Shao. </p> | ||
<p> </p> | <p> </p> | ||
- | <p align="justify">Information of pCJDFA, pCJDFB and pCJDD0 are as | + | <p align="justify">Information of pCJDFA, pCJDFB and pCJDD0 are as follows:</p> |
+ | </br> | ||
<h5>1). pCJDFA: FA-MS2 cloned into T7 duet expression vectors pACYCDuet-1 Spr</h5> | <h5>1). pCJDFA: FA-MS2 cloned into T7 duet expression vectors pACYCDuet-1 Spr</h5> | ||
- | <img src="https://static.igem.org/mediawiki/2012/ | + | <div class="floatC"> |
+ | <img src="https://static.igem.org/mediawiki/2012/b/b0/FA.png" width="450px" /> | ||
+ | </div> | ||
<p> </p> | <p> </p> | ||
+ | |||
<h5>2) pCJDFB (FB-PP7 cloned into T7 duet expression vector pCOLADuet-1) Kanr</h5> | <h5>2) pCJDFB (FB-PP7 cloned into T7 duet expression vector pCOLADuet-1) Kanr</h5> | ||
- | <img src="https://static.igem.org/mediawiki/2012/ | + | <div class="floatC"> |
+ | <img src="https://static.igem.org/mediawiki/2012/5/56/FB.png" width="450px" /> | ||
+ | </div> | ||
<p> </p> | <p> </p> | ||
<h5>3) pCJDD0 (Scaffold D0 cloned into T7 duet expression vector PETDuet) Ampr</h5> | <h5>3) pCJDD0 (Scaffold D0 cloned into T7 duet expression vector PETDuet) Ampr</h5> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/f/fa/D0.png" width="450px" /> | ||
+ | </div> | ||
+ | <p> </p> | ||
<p><h5>4) BL21-star(DE3)</h5> | <p><h5>4) BL21-star(DE3)</h5> | ||
- | <p align="justify">cells were used to co-express plasmids. The most important feature of BL21-star(DE3) is that it carries a mutated rne gene (rne131) which encodes a truncated RNase E enzyme that lacks the ability to degrade mRNA, resulting in an increase in mRNA stability.</p | + | <p align="justify">BL21-star(DE3) cells were used to co-express plasmids. The most important feature of BL21-star(DE3) is that it carries a mutated rne gene (rne131) which encodes a truncated RNase E enzyme that lacks the ability to degrade mRNA, resulting in an increase in mRNA stability.</p> |
- | + | ||
- | + | ||
<p> </p> | <p> </p> | ||
+ | <h3>2. Transformation and induction</h3> | ||
<p align="justify">Three groups of transformation were conducted. The first is BL21-star(DE3) transformed only with pCJDD0, the second with pCJDFA+pCJDFB, and the third with pCJDFA+pCJDFB+pCJDD0. </p> | <p align="justify">Three groups of transformation were conducted. The first is BL21-star(DE3) transformed only with pCJDD0, the second with pCJDFA+pCJDFB, and the third with pCJDFA+pCJDFB+pCJDD0. </p> | ||
<p> </p> | <p> </p> | ||
Line 354: | Line 419: | ||
<p align="justify">Wash the bacteria twice with equivalent PBS. Then test the Fluorescence intensity (FI) and OD with Biotek Synergy Hybrid Reader. | <p align="justify">Wash the bacteria twice with equivalent PBS. Then test the Fluorescence intensity (FI) and OD with Biotek Synergy Hybrid Reader. | ||
<p> </p> | <p> </p> | ||
- | <p align="justify">Data was shown in Fig.3. The fluorescence of different expression systems are pictured by Olympus fluoview fv1000 confocal laser scanning microscope ( Fig.2)<p> | + | <p align="justify">Data was shown in Fig.3. The fluorescence of different expression systems are pictured by Olympus fluoview fv1000 confocal laser scanning microscope (Fig.2)<p> |
<p align="justify">They were transformed with the pCJDD0 (plasmid with scaffold D0) into BL21-star-(DE3). </p> | <p align="justify">They were transformed with the pCJDD0 (plasmid with scaffold D0) into BL21-star-(DE3). </p> | ||
+ | <p> </p> | ||
+ | <h2>Results</h2> | ||
+ | <p> </p> | ||
+ | <p>Contrasted to the fluorescence intensity (FI) of the E.coli which only express FA-MS2 and FB-PP7 fusion proteins, the fluorescence intensity of the E.coli with scaffold D0 was obviously increased. Thus, it was possible for us to carry out our development and reformation of RNA scaffold.</p> | ||
+ | <p> </p> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/5/53/ZJU_PROJECT_S0_Confocal.jpg" width="500px" /> | ||
+ | </div> | ||
+ | <p class="fig"><b>Fig.2</b> FI of Split GFPs without or with RNA scaffold. A. BL21*(DE3) transformed with pCJDFA and pCJDFB. B. BL21*(DE3) transformed with pCJDFA, pCJDFB and pCJDD0. The contrast of FI obviously shown that RNA scaffold D0 could bind split GFPs together, so that split GFPs could fluoresce. (Pictures were obtained with Olympus fluoview fv1000 confocal laser scanning microscope, using a 60X objective.)</p> | ||
+ | <p> </p> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/6/6f/0921.png" width="500px" /> | ||
+ | </div> | ||
+ | <p class="fig"><b>Fig.3</b> FI/OD of different transformation groups. There exist significant differences among three groups. And as expected, split GFPs with scaffold D0 together can fluoresce stronger than those without scaffold. </p> | ||
+ | </br> | ||
+ | <h3>Reference:</h3> | ||
+ | <p class="ref">1. Thodey, K. & Smolke, C.D. Bringing It Together with RNA. Science 333, 412-413 (2011).</br> | ||
+ | 2. Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of Intracellular Reactions with Rationally Designed RNA Assemblies. Science 333, 470-474 (2011).</p> | ||
+ | |||
+ | <p> </p> | ||
+ | |||
</div> | </div> | ||
</div><!-- end .acc_container --> | </div><!-- end .acc_container --> | ||
- | <h2 class="acc_trigger">04 <strong>S1: | + | <h2 class="acc_trigger">04 <strong>S1: ALLOSCAFFOLD</strong></h2> |
<div class="acc_container" style="display: none; "> | <div class="acc_container" style="display: none; "> | ||
Line 367: | Line 453: | ||
<div class="projectNav"> | <div class="projectNav"> | ||
- | + | <table class="tm"> | |
- | + | <tr><td class="tm" width="450px"> | |
+ | <div class="projectNavFloat"> | ||
+ | |||
+ | <a target="brainFrame" href="https://2012.igem.org/Team:ZJU-China/project_s1_1.htm" style="text-decoration:none">1. Summary</a><br> | ||
+ | |||
+ | <a target="brainFrame" href="https://2012.igem.org/Team:ZJU-China/project_s1_2.htm" style="text-decoration:none">2. Design</a><br> | ||
+ | |||
+ | <a target="brainFrame" href="https://2012.igem.org/Team:ZJU-China/project_s1_4.htm" style="text-decoration:none">3. Preparation: Characterize previous parts</a> | ||
<br> | <br> | ||
- | + | </div><!-- end .projectNavFloat --> | |
- | + | </td> | |
- | + | <td class="tm" width="250px"> | |
- | + | <div class="projectNavFloat"> | |
- | + | <a target="brainFrame" href="https://2012.igem.org/Team:ZJU-China/project_s1_3.htm" style="text-decoration:none">4. Characterization</a><br> | |
- | + | ||
- | + | <a target="brainFrame" href="https://2012.igem.org/Team:ZJU-China/project_s1_5.htm" style="text-decoration:none">5. Results</a> | |
+ | |||
+ | </div><!-- end .projectNavFloat --> | ||
+ | </td></tr> | ||
+ | </table> | ||
<br class="clearfloat"> | <br class="clearfloat"> | ||
</div><!-- end .projectNav --> | </div><!-- end .projectNav --> | ||
Line 396: | Line 492: | ||
<p>What is the Library of RNA Scaffold for? Evolution! The variable of RNA structures accommodates a wide application prospect. Though the point mutation reduced uncertainty of selection and the blindness, trying to find a suitable construction is vast project. Various experimental methods, selection and modeling should be used in this part. By analyzing existing mutations, derivation can be made to construct and find an enhanced RNA scaffold. We called this process evolution. </p> | <p>What is the Library of RNA Scaffold for? Evolution! The variable of RNA structures accommodates a wide application prospect. Though the point mutation reduced uncertainty of selection and the blindness, trying to find a suitable construction is vast project. Various experimental methods, selection and modeling should be used in this part. By analyzing existing mutations, derivation can be made to construct and find an enhanced RNA scaffold. We called this process evolution. </p> | ||
<p> </p> | <p> </p> | ||
- | <p>The Library may contain changes of self, self-assemble, RNA-RNA interaction, RNA-protein interaction. Some examples are | + | <p>The Library may contain changes of self, self-assemble, RNA-RNA interaction, RNA-protein interaction. Some examples are shown below.</p> |
<p> </p> | <p> </p> | ||
- | + | <h2>Categories of mutants</h2> | |
- | <img src="https://static.igem.org/mediawiki/igem.org/d/da/Zju_library_Fig1a.jpg" width=" | + | <h3>1. Mutating arm length</h3> |
- | <p>fig 1a. D0 is the original scaffold. D0 a-d were mutated to the scaffold with different aptamer arm length. </p> | + | <p>changing the arm length of RNA scaffold D0. As the mechanism of D0 is reducing the distance of two key enzyme of the pathway, in other words, the output and reaction efficiency is depend on the local concentration. The two aptamer binding site in our project is on two hairpin arms witch are designed in the same length. The change of the arm length provides feasibility of distance-efficiency research. We used split GFP experiments. We made some mutations with different arm length, the result of D0M4 and D0M 5 split GFP experiment shows the light decreasing lend by split GFP FA-FB distance. The difference (PD0M4=0.079, PD0M5=0.025) suggests that the mutating arm length scaffold doesn’t provide an on/off switch but a definability one. It characterized the D0 in another way.</p> |
- | <img src="https://static.igem.org/mediawiki/ | + | <div class="floatC"> |
- | <p>fig 1b. The result of arm length mutating. Both D0M4 and D0M5 scaffold half-on GEP.</p> | + | <img src="https://static.igem.org/mediawiki/igem.org/d/da/Zju_library_Fig1a.jpg" width="400px" /> |
+ | <p class="fig"><b>fig 1a.</b> D0 is the original scaffold. D0 a-d were mutated to the scaffold with different aptamer arm length. </p> | ||
+ | </div> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/3/36/TypeL.png" width="450px" /> | ||
+ | <p class="fig"><b>fig 1b.</b> The result of arm length mutating. Both D0M4 and D0M5 scaffold half-on GEP.</p> | ||
+ | </div> | ||
<p> </p> | <p> </p> | ||
- | < | + | <h3>2. Mutating aptamer binding site</h3> |
- | <img src="https://static.igem.org/mediawiki/igem.org/a/ad/Zju_library_Fig2a.jpg" width=" | + | <p>Mutating the PP7 and MS2 binding sites prevented protein scaffolding. Preventing protein scaffolding lead to the key enzyme dissociation and the decrease of enzyme local concentration. By chancing the sequence of MS2 aptamer binding site, the fluorescent light decreased. D0M3 in our project is the molecular with mutated aptamer binding site. Split GFP experiment shows that there is a significant difference between D0 an D0M3(P≦0.05, fig2.c). Camille J. Delebecque has done the same work for the H2 biosynthesis pathway.</p> |
- | <p> | + | </br> |
+ | <table class="tm" align="center"> | ||
+ | <tr> | ||
+ | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/a/ad/Zju_library_Fig2a.jpg" width="300px" /></td> | ||
+ | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/9/98/Zju_library_Fig2b.jpg" width="300px" /></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p class="fig"><b>Fig2a.</b> MS2 and PP7 bind to the scaffold and make GFP work. </br> | ||
+ | <b>Fig2b.</b> By mutating aptamer binding site, scaffolding is stop. </p> | ||
<p> </p> | <p> </p> | ||
- | < | + | <div class="floatC"> |
- | + | <img src="https://static.igem.org/mediawiki/igem.org/9/9b/TypeA.png" width="400px"/> | |
- | + | <p class="fig"><b>Fig2c.</b> significant difference between D0 an D0M3</p> | |
- | <img src="https://static.igem.org/mediawiki/igem.org/ | + | </div> |
- | <p> | + | |
<p> </p> | <p> </p> | ||
- | < | + | <h3>3. Assemblage</h3> |
+ | <p>adding extra sequence for self-, RNA-, protein-assemblage. The added sequence may be a riboswitch, RNA or protein binding site, self-assemble structure. Regulation molecular search is also wanted synchronously. </p> | ||
<p> </p> | <p> </p> | ||
<h2>Applications and outlook</h2> | <h2>Applications and outlook</h2> | ||
<p> </p> | <p> </p> | ||
- | < | + | <h3>1. sRNA regulation</h3> |
- | <img src="https://static.igem.org/mediawiki/igem.org/e/ec/Zju_library_Fig3.jpg" width=" | + | <p>Simple an direct RNA-RNA interaction change the object RNA scaffold structure. As a Foundation regulation, it substantially enhances the possibilities of forthcoming experiment. </p> |
- | <img src="https://static.igem.org/mediawiki/igem.org/8/89/Zju_library_Fig3d.jpg" width=" | + | <div class="floatC"> |
- | <p> | + | <img src="https://static.igem.org/mediawiki/igem.org/e/ec/Zju_library_Fig3.jpg" width="400px" /> |
+ | <img src="https://static.igem.org/mediawiki/igem.org/8/89/Zju_library_Fig3d.jpg" width="400px" /> | ||
+ | </div> | ||
+ | <p class="fig"><b>Fig3.</b> The designed scaffold has a interaction to regulatory sRNA. Same mechanism, regulatory molecule can be changed to mRNA a. Turn off the scaffold by the competitive binding with aptamer binding site (green) b. The RNA scaffold has a secondary structural switch controls accessibility of sRNA-binding sites(blue) witch can change the arm length. Output regulated by arm length change. c. both methods were used. d. bind and release the object molecular.)</p> | ||
+ | |||
<p> </p> | <p> </p> | ||
- | < | + | <h3>2. Protein expression (mRNA) regulation</h3> |
+ | <p>RNA scaffold as a free molecular in cell can specific bind mRNA and protein. Binding molecular changes the structure of scaffold to release or combine something. So that oncogene and virogene can be found and controlled by the drug from RNA scaffold. The problem of cancer therapeutic drug side effecting may solved by it. </p> | ||
<p> </p> | <p> </p> | ||
- | < | + | <h3>3. Self quenching(Self regulation)</h3> |
- | + | <p>Adding self binding site, a balance of “on” and “off” scaffolds is built. The relationship between the binding site size, CG bases, binding form and the rate binding molecular is urgently modeled. Forming dimerization and trimerization, the concentration of working scaffold could be regulated.</p> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<p> </p> | <p> </p> | ||
+ | <h3>4. Polo-scaffold</h3> | ||
+ | <p>Scaffold with intermolecular binding component. These scaffolds bind each other or bind through mediate molecular. And this binding mode has been proved both in vitro and vivo. The aggregation of molecular also makes artificial organelle achievable. </p> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/igem.org/2/2f/Zju_library_Fig4a.jpg" width="300px" /> | ||
+ | </div> | ||
+ | <table class="tm" align="center"> | ||
+ | <tr> | ||
+ | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/b/be/Zju_library_Fig4b.jpg" width="200px" /></td> | ||
+ | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/8/8d/Zju_library_Fig4c.jpg" width="200px" /></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p class="fig"><b>Fig4a.(Upper)</b> Dimerization and trimerization. Protein binding site is sealed off by the scaffolds themselves. Too much scaffold molecular lend to the self regulation.</br> | ||
+ | <b>Fig4b.(Lower left)</b> Dimerization and trimerization. Protein binding site is sealed off by the scaffolds themselves. Too much scaffold molecular lend to the self regulation.</br> | ||
+ | <b>Fig4c.(Lower right)</b> Polo-scaffold be made by head-tail binding.</p> | ||
<p> </p> | <p> </p> | ||
<p>Several RNA scaffold mutations are constructed and characterize, but they are the tip of the iceberg. There is still plenty to do in this part. The charms of library are the selection and combination. It introduces a new concept of biobrick combination mode.</p> | <p>Several RNA scaffold mutations are constructed and characterize, but they are the tip of the iceberg. There is still plenty to do in this part. The charms of library are the selection and combination. It introduces a new concept of biobrick combination mode.</p> | ||
- | + | </br> | |
</div> | </div> | ||
</div><!-- end .acc_container --> | </div><!-- end .acc_container --> | ||
Line 444: | Line 567: | ||
<h2 class="acc_trigger">06 <strong>S3: BIOSYNTHESIS OF IAA</strong></h2> | <h2 class="acc_trigger">06 <strong>S3: BIOSYNTHESIS OF IAA</strong></h2> | ||
+ | <div class="acc_container" style="display: none; "> | ||
+ | <div style="height:800px;overflow:scroll;"> | ||
+ | <h2>Background</h2> | ||
+ | <p>Indole 3-acetic acid (IAA) is a plant growth hormone that serves as a potent and important auxin to many plants. Although auxin is a key factor for plant growth, it can be a metabolic burden to plants at high concentrations and prohibit plant growth, which contrasts its initial goal. </p> | ||
+ | </br> | ||
+ | <p>Imperial College London 2011 iGME team claimed that molecules of IAA are chemically labile in aqueous solution, so they produce IAA in soil to promote rather than stunt plant root growth. They also regulated output of IAA through change However, root sensitivity to IAA differs from variety to variety. There is no guarantee that a changeless IAA production will fit in all situation. Our designed RNA alloscaffold makes it possible to change the output of IAA in a range to adapt the need of plant root growth.</p> | ||
+ | </br> | ||
+ | <p>There are two enzymes responsible for IAA biosynthesis in <i>E.coli</i>, IaaM and IaaH. IaaM catalyzes tryptophan to Indole-3-acetamide while IaaH catalyzes it to Indole-3-acetic acid.</p> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/e/e8/IAA_pathway.png" width="500px"/> | ||
+ | </div> | ||
+ | </br> | ||
+ | |||
+ | <h2>Experiment Design</h2> | ||
+ | <p>With the help of riboscaffold, we can regulate IAA biosynthesis in the following two aspects, increasing yields and regulating reaction speed.</p> | ||
+ | </br> | ||
+ | <p>IaaM and IaaH were fused to a dimer of MS2 and a single copy of PP7 protein respectively (in plasmids pZCM and pZCH).</p> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/c/c3/PZCM.png" width="400px"/><br/><br/> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/b/b4/PZCH.png" width="400px"/> | ||
+ | <p class="fig"><b>Fig 1.</b> pZCM (the upper one) and pZCH (the lower one)</p> | ||
+ | </div> | ||
+ | </br> | ||
+ | <h3>1. Increasing yields</h3> | ||
+ | <p>Basic scaffold D0 has been proved to be effective in bringing two proteins closer by split-GFP assay. We further proved that D0 can be used in accelerating reaction speed.</p> | ||
+ | </br> | ||
+ | <p>Basic scaffold D0 (in plasmids pCJDD0) and pZCM, pZCH were transform into <i>E.coli</i> strain BL21*(DE3) for co-expression.</p> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/igem.org/b/b8/IAA-1.png" width="500px" /> | ||
+ | <p class="fig"><b>Fig 2.</b> Two enzymes related to the reaction are fused to basic scaffold D0 to get spatial organized</p> | ||
+ | </div> | ||
+ | </br> | ||
+ | <h3>2. Regulating reaction speed</h3> | ||
+ | <p>Alloscaffolds (clover 2 and clover 3) have been proved to be effective in regulating distance between two proteins by split-GFP assay. We further proved that they can be used in regulating reaction speed.</p> | ||
+ | </br> | ||
+ | <p>The interaction inhibits the binding function of MS2 aptamer in the absence of theophylline. IaaM-2X-MS2 cannot bind on RNA scaffold thus the speed of reaction is normal.</p> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/igem.org/2/21/IAA-3.png" width="500px" /> | ||
+ | <p class="fig"><b>Fig 3.</b> Illustration of alloscaffolds in biosynthesis pathway.</p> | ||
+ | </div> | ||
+ | <p>When theophylline is added, the fold of the loop is changed and thus the interaction will disappear, leading to the binding of MS2 aptamer and corresponding protein. IaaM and IaaH will get closer to accelerate reaction speed.</p> | ||
+ | </br> | ||
+ | <p>When theophylline is added, the fold of the loop is changed and thus the interaction will disappear, leading to the binding of MS2 aptamer and corresponding protein. IaaM and IaaH will get closer to accelerate reaction speed.</p> | ||
+ | </br> | ||
+ | <p>Alloscaffolds (in plasmids pZCCOV2 and pZCCOV3) and pZCM, pZCH were transformed into E.coli strain BL21*(DE3) for coexpression.</p> | ||
+ | </br> | ||
+ | <h2>Results</h2> | ||
+ | <h3>1. Standard curve</h3> | ||
+ | <p>We plan to determined the concentration of IAA with salkowski assay. The standard curve has been made with IAA in LB.</p> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
+ | <img src="https://static.igem.org/mediawiki/2012/2/25/IAA_standard_curve.png" width="500px" /> | ||
+ | <p class="fig"><b>Fig 4.</b> Standard curve for testing IAA concentration.</p> | ||
+ | </div> | ||
+ | <p>Our experiment is on going, click <a class="parts" href="http://bis.zju.edu.cn/igem2012/project-biosyn-result.htm" target="_blank">here</a> for latest results.</p> | ||
+ | </br> | ||
+ | |||
+ | </div><!-- end of IAA biosynthesis --> | ||
+ | </div><!-- end .acc_container --> | ||
+ | |||
+ | <h2 class="acc_trigger">07 <strong>S4: POLYSCAFFOLD</strong></h2> | ||
<div class="acc_container" style="display: none; "> | <div class="acc_container" style="display: none; "> | ||
<!--Content Goes Here--> | <!--Content Goes Here--> | ||
- | |||
<div class="projectNav"> | <div class="projectNav"> | ||
- | + | <table class="tm"> | |
- | + | <tr><td class="tm" width="300px"> | |
- | + | <div class="projectNavFloat"> | |
- | + | <a target="s4Frame" href="https://2012.igem.org/Team:ZJU-China/project_s4_1.htm" style="text-decoration:none">1. Summary</a><br/> | |
- | + | ||
- | + | <a target="s4Frame" href="https://2012.igem.org/Team:ZJU-China/project_s4_2.htm" style="text-decoration:none">2. Design</a><br/> | |
- | + | </div><!-- end .projectNavFloat --> | |
- | + | </td> | |
- | + | <td class="tm" width="350px"> | |
- | + | <div class="projectNavFloat"> | |
- | + | <a target="s4Frame" href="http://bis.zju.edu.cn/igem2012/project-s4-3.htm" style="text-decoration:none">3. Results</a><br/> | |
- | + | ||
- | + | <a target="s4Frame" href="https://2012.igem.org/Team:ZJU-China/project_s4_4.htm" style="text-decoration:none">4. Future Work</a><br> | |
- | + | </div><!-- end .projectNavFloat --> | |
- | + | </td></tr> | |
- | + | </table> | |
- | + | <br class="clearfloat" /> | |
- | + | ||
- | + | ||
- | + | ||
- | <br class="clearfloat"> | + | |
</div><!-- end .projectNav --> | </div><!-- end .projectNav --> | ||
- | + | <iframe src="" frameborder="0" name="s4Frame" width="100%" height="500px"> </iframe> | |
- | |||
+ | </div><!-- end .acc_container --> | ||
- | <h2 class="acc_trigger"> | + | <h2 class="acc_trigger">08 <strong>PARTS</strong></h2> |
<div class="acc_container" style="display: none; "> | <div class="acc_container" style="display: none; "> | ||
<!--Content Goes Here--> | <!--Content Goes Here--> | ||
<div style="height:800px;overflow:scroll;"> | <div style="height:800px;overflow:scroll;"> | ||
- | <h2> | + | <h2>Summary</h2> |
<p>This is a summary of the parts that we have submitted to the <a href="http://partsregistry.org/Main_Page">Registry of Standard Biological Parts</a>. These parts include: </p> | <p>This is a summary of the parts that we have submitted to the <a href="http://partsregistry.org/Main_Page">Registry of Standard Biological Parts</a>. These parts include: </p> | ||
- | <p>ncRNA scaffold generator: <a href="http://partsregistry.org/Part:BBa_K738000">BBa_K738000</a>, <a href="http://partsregistry.org/Part:BBa_K738002">BBa_K738002</a> </p> | + | <p><b>ncRNA scaffold generator: </b><a class="parts" href="http://partsregistry.org/Part:BBa_K738000">BBa_K738000</a>, <a class="parts" href="http://partsregistry.org/Part:BBa_K738002">BBa_K738002</a> </p> |
- | <p>protein coding domains: <a href="http://partsregistry.org/Part:BBa_K738004">BBa_K738004</a> , <a href="http://partsregistry.org/Part:BBa_K738005">BBa_K738005</a> , <a href="http://partsregistry.org/Part:BBa_K738006">BBa_K738006</a> , <a href="http://partsregistry.org/Part:BBa_K738007">BBa_K738007</a> </p> | + | <p><b>protein coding domains: </b><a class="parts" href="http://partsregistry.org/Part:BBa_K738004">BBa_K738004</a> , <a class="parts" href="http://partsregistry.org/Part:BBa_K738005">BBa_K738005</a> , <a class="parts" href="http://partsregistry.org/Part:BBa_K738006">BBa_K738006</a> , <a class="parts" href="http://partsregistry.org/Part:BBa_K738007">BBa_K738007</a> </p> |
<p>These parts have all been well characterized. Please visit the Registry of Standard Biological Parts for more information.</p> | <p>These parts have all been well characterized. Please visit the Registry of Standard Biological Parts for more information.</p> | ||
- | <h2> | + | <h2>List</h2> |
- | <table | + | <table> |
<tr> | <tr> | ||
<td>?</td> | <td>?</td> | ||
Line 503: | Line 686: | ||
<td> </td> | <td> </td> | ||
<td>W</td> | <td>W</td> | ||
- | <td><a href="http://partsregistry.org/Part:BBa_K738000">BBa_K738000</a></td> | + | <td><a class="parts" href="http://partsregistry.org/Part:BBa_K738000">BBa_K738000</a></td> |
<td>Generator</td> | <td>Generator</td> | ||
<td>RNA Scaffold generator</td> | <td>RNA Scaffold generator</td> | ||
Line 512: | Line 695: | ||
<td><img src="https://static.igem.org/mediawiki/igem.org/f/f1/Zju_redheart.jpg" /></td> | <td><img src="https://static.igem.org/mediawiki/igem.org/f/f1/Zju_redheart.jpg" /></td> | ||
<td>W</td> | <td>W</td> | ||
- | <td><a href="http://partsregistry.org/Part:BBa_K738002">BBa_K738002</a></td> | + | <td><a class="parts" href="http://partsregistry.org/Part:BBa_K738002">BBa_K738002</a></td> |
<td>Generator</td> | <td>Generator</td> | ||
<td>Theophyline riboswitch regulated RNA Scoffold(clover version 2)</td> | <td>Theophyline riboswitch regulated RNA Scoffold(clover version 2)</td> | ||
Line 521: | Line 704: | ||
<td> </td> | <td> </td> | ||
<td>W</td> | <td>W</td> | ||
- | <td><a href="http://partsregistry.org/Part:BBa_K738004">BBa_K738004</a></td> | + | <td><a class="parts" href="http://partsregistry.org/Part:BBa_K738004">BBa_K738004</a></td> |
<td>Generator</td> | <td>Generator</td> | ||
<td>FA-2X-MS2;Split GFP N-terminal domain fused with MS2 protein</td> | <td>FA-2X-MS2;Split GFP N-terminal domain fused with MS2 protein</td> | ||
Line 530: | Line 713: | ||
<td> </td> | <td> </td> | ||
<td>W</td> | <td>W</td> | ||
- | <td><a href="http://partsregistry.org/Part:BBa_K738005">BBa_K738005</a></td> | + | <td><a class="parts" href="http://partsregistry.org/Part:BBa_K738005">BBa_K738005</a></td> |
<td>Coding</td> | <td>Coding</td> | ||
<td>FB-2X-PP7;Split GFP C-terminal domain fused with PP7 protein</td> | <td>FB-2X-PP7;Split GFP C-terminal domain fused with PP7 protein</td> | ||
Line 539: | Line 722: | ||
<td> </td> | <td> </td> | ||
<td> </td> | <td> </td> | ||
- | <td><a href="http://partsregistry.org/Part:BBa_K738006">BBa_K738006</a></td> | + | <td><a class="parts" href="http://partsregistry.org/Part:BBa_K738006">BBa_K738006</a></td> |
<td>Coding</td> | <td>Coding</td> | ||
<td>FA: Split GFP N-terminal domain</td> | <td>FA: Split GFP N-terminal domain</td> | ||
Line 548: | Line 731: | ||
<td> </td> | <td> </td> | ||
<td> </td> | <td> </td> | ||
- | <td><a href="http://partsregistry.org/Part:BBa_K738007">BBa_K738007</a></td> | + | <td><a class="parts" href="http://partsregistry.org/Part:BBa_K738007">BBa_K738007</a></td> |
<td>Coding</td> | <td>Coding</td> | ||
<td>FB, Split GFP C-terminal domain</td> | <td>FB, Split GFP C-terminal domain</td> | ||
Line 555: | Line 738: | ||
</tr> | </tr> | ||
</table> | </table> | ||
+ | </br> | ||
- | + | <h2>Future work</h2> | |
- | <h2> | + | |
<h3>Theophylline responded RNA riboscaffold</h3> | <h3>Theophylline responded RNA riboscaffold</h3> | ||
<p>We have designed two RNA riboscaffold responded to theophylline. Unfortunately, we only managed to submit one of them (BBa_K738002) to the Registry of Biological Parts in time (that means before September 26). </p> | <p>We have designed two RNA riboscaffold responded to theophylline. Unfortunately, we only managed to submit one of them (BBa_K738002) to the Registry of Biological Parts in time (that means before September 26). </p> | ||
Line 568: | Line 751: | ||
</div> | </div> | ||
</div><!-- end .acc_container --> | </div><!-- end .acc_container --> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Line 634: | Line 758: | ||
<!--Content Goes Here--> | <!--Content Goes Here--> | ||
- | <h2>1. Riboscaffold | + | <div style="height:800px;overflow:scroll;"> |
- | <p>This is an extension application of our designed clover series of riboscaffold. Some diseases, such as Cancer, will release some small molecular or change microenvironments beside it thus produce detectable signals. Different from using a biosensor to detect these signals, we utilize our scaffold’s aptamer, accompanying with the production of medicine target the disease. If we change Theophylline aptamer into nidus(disease) molecular aptamer, when riboscaffold bind nidus molecular and change conformation, MS2 aptamer & PP7 aptamer are going to set closer. Enzymes which combining MS2 aptamer & PP7 aptamer and producing drugs are ready to catalyze thus bring out targeting agents. It turns out to be a one-stop agency, once detect the focus of diease, will generate corresponding drug targeting the diease. </p> | + | <h2>1. Angel Riboscaffold</h2> |
+ | <p>This is an extension application of our designed clover series of riboscaffold in drug diliver therapy. Some diseases, such as Cancer, will release some small molecular or change microenvironments beside it thus produce detectable signals. Different from using a biosensor to detect these signals, we utilize our scaffold’s aptamer, accompanying with the production of medicine target the disease. If we change Theophylline aptamer into nidus(disease) molecular aptamer, when riboscaffold bind nidus molecular and change conformation, MS2 aptamer & PP7 aptamer are going to set closer. Enzymes which combining MS2 aptamer & PP7 aptamer and producing drugs are ready to catalyze thus bring out targeting agents. It turns out to be a one-stop agency, once detect the focus of diease, will generate corresponding drug targeting the diease. </p> | ||
+ | </br> | ||
+ | <div class="floatC"> | ||
<img src="https://static.igem.org/mediawiki/igem.org/d/da/ZJU_persp_1.png" width="600px" / > | <img src="https://static.igem.org/mediawiki/igem.org/d/da/ZJU_persp_1.png" width="600px" / > | ||
- | <p> | + | <p class="fig"><b>Fig1.</b> Riboscaffold which can detect and treat diseases. </p> |
+ | </div> | ||
+ | </br> | ||
<h2>2. Shining Riboscaffold</h2> | <h2>2. Shining Riboscaffold</h2> | ||
+ | <div> | ||
+ | <div class="floatR" width="200px"> | ||
+ | <div class="floatC" width="200px"> | ||
+ | <img src="https://static.igem.org/mediawiki/igem.org/9/95/Zju_persp_2.png" width="200px" / > | ||
+ | </div> | ||
+ | <p class="fig"><b>Fi2.</b> Aptamers that can shine upon binding. </p> | ||
+ | </div> | ||
+ | <div width="500px"> | ||
<p>Paige[1] has reported some RNA aptamers that can bind fluorophores, which are small compounds, and in this way resemble the chemical bonds in GFP, then give out fluorescence. </p> | <p>Paige[1] has reported some RNA aptamers that can bind fluorophores, which are small compounds, and in this way resemble the chemical bonds in GFP, then give out fluorescence. </p> | ||
- | + | </br> | |
- | <p>If we use these | + | <p>If we use these aptamers in replace of the theophylline aptamer on our riboscaffold, we can make the riboscaffold shining upon the binding of signal compounds mentioned above. This is a cool method to visualize the states, dynamics and localization of riboscaffold in the living cell. </p> |
- | < | + | </div> |
- | < | + | </div> |
- | + | </br> | |
+ | </br> | ||
<h2>3. LEGO Riboscaffold</h2> | <h2>3. LEGO Riboscaffold</h2> | ||
<p>Riboscaffold has unbelievable ability to extend itself through base pairing with each other, just like LEGO bricks! The assembly of LEGO riboscaffolds can load more enzymes and to a large degree accelerate the reaction or artificially construct a longer pathway with high efficiency. For example, artificial TCA cycle abd artificial EMP are promising results. The following pictures show our wide imagination of the possible structure of LEGO riboscaffolds. </p> | <p>Riboscaffold has unbelievable ability to extend itself through base pairing with each other, just like LEGO bricks! The assembly of LEGO riboscaffolds can load more enzymes and to a large degree accelerate the reaction or artificially construct a longer pathway with high efficiency. For example, artificial TCA cycle abd artificial EMP are promising results. The following pictures show our wide imagination of the possible structure of LEGO riboscaffolds. </p> | ||
- | + | </br> | |
<p>But how to obtain these LEGO riboscaffolds? Wachtveitlb[2] has reported a fantastic method to detect RNA-RNA interaction by introducing fluorophores like 1-ethynylpyrene into the 2-position of RNA adenosine. When two single-stranded RNAs with this fluorophore base pair with each other, the fluorescence spectrum changes and thus suggesting their interaction. So it is hopeful to find the desired riboscaffolds as LEGO bricks by selecting from the library! </p> | <p>But how to obtain these LEGO riboscaffolds? Wachtveitlb[2] has reported a fantastic method to detect RNA-RNA interaction by introducing fluorophores like 1-ethynylpyrene into the 2-position of RNA adenosine. When two single-stranded RNAs with this fluorophore base pair with each other, the fluorescence spectrum changes and thus suggesting their interaction. So it is hopeful to find the desired riboscaffolds as LEGO bricks by selecting from the library! </p> | ||
- | <img src="https://static.igem.org/mediawiki/igem.org/b/bc/Zju_persp_4.png" width=" | + | </br> |
- | < | + | <div class="floatC"> |
- | <img src="https://static.igem.org/mediawiki/igem.org/5/56/Zju_persp_5.png" width=" | + | <table class="tm" align="Center"> |
- | < | + | <tr> |
- | <img src="https://static.igem.org/mediawiki/igem.org/e/ea/Zju_persp_6.png" width=" | + | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/b/bc/Zju_persp_4.png" width="250px" / ></td> |
- | < | + | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/5/56/Zju_persp_5.png" width="250px" / ></td> |
- | <img src="https://static.igem.org/mediawiki/igem.org/8/81/Zju_presp_7.png" width=" | + | </tr> |
- | <p> Sheets and tubes constructed by LEGO riboscaffolds in vivo.</p> | + | <tr> |
- | + | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/e/ea/Zju_persp_6.png" width="250px" / ></td> | |
- | <h2>4. | + | <td class="tm"><img src="https://static.igem.org/mediawiki/igem.org/8/81/Zju_presp_7.png" width="250px" / ></td> |
+ | </tr> | ||
+ | </table> | ||
+ | </div> | ||
+ | <p class="fig"><b>Fig3.1.(Upper Left)</b> LEGO bricks.</br> | ||
+ | <b>Fig3.2.(Upper right)</b> Long scaffold that has multiple binding sites.</br> | ||
+ | <b>Fig3.3.(Lower Left)</b> A possible device built by LEGO riboscaffold.</br> | ||
+ | <b>Fig3.4.(Lower Right)</b> Sheets and tubes constructed by LEGO riboscaffolds <i>in vivo</i>. [6]</p> | ||
+ | </br> | ||
+ | <h2>4. Activator scaffold</h2> | ||
<p>In eukaryote, there are naturally produced long non-coding RNAs that attract more and more attention these days and display intriguing potential to act as scaffolds [3]. And our riboscaffold can mimic them and bring their functions to prokaryote. One of the functions is combining related transcription factors and bring them to promoter, as a result enhance the expression of target gene. That is because ncRNA can binds both DNA and Proteins, and can travel freely between nucleus and cytoplasm, which displays great advantage as a bridge. </p> | <p>In eukaryote, there are naturally produced long non-coding RNAs that attract more and more attention these days and display intriguing potential to act as scaffolds [3]. And our riboscaffold can mimic them and bring their functions to prokaryote. One of the functions is combining related transcription factors and bring them to promoter, as a result enhance the expression of target gene. That is because ncRNA can binds both DNA and Proteins, and can travel freely between nucleus and cytoplasm, which displays great advantage as a bridge. </p> | ||
- | + | </br> | |
<p>Aptamers can be selected in vitro against nearly any target of choice. There are RNA aptamers that can specifically bind some transcriptional regulator. For example, Hunsicker [4] has selected one RNA aptamer that can bind TetR, which usually binds on operator sequence and repress gene expression. So once aptamers mentioned above are designed into a riboscaffold, it can initiate the expression of target genes with higher efficiency. </p> | <p>Aptamers can be selected in vitro against nearly any target of choice. There are RNA aptamers that can specifically bind some transcriptional regulator. For example, Hunsicker [4] has selected one RNA aptamer that can bind TetR, which usually binds on operator sequence and repress gene expression. So once aptamers mentioned above are designed into a riboscaffold, it can initiate the expression of target genes with higher efficiency. </p> | ||
- | <img src="https://static.igem.org/mediawiki/ | + | </br> |
- | <p> | + | <div class="floatC"> |
- | + | <img src="https://static.igem.org/mediawiki/2012/8/8e/Zju_persp_3.1.png" width="500px" / > | |
+ | <p class="fig"><b>Fig3.</b> Riboscaffold that can bring transcription factors to promoters. </p> | ||
+ | </div> | ||
+ | </br> | ||
<h2>5. Medicine & Health</h2> | <h2>5. Medicine & Health</h2> | ||
<p>To date, many groups have successfully identified aptamers with a variety of functions, including inhibitory and decoy-like aptamers, regulatable aptamers, multivalent/agonistic aptamers, and aptamers that act as delivery vehicles [5]. </p> | <p>To date, many groups have successfully identified aptamers with a variety of functions, including inhibitory and decoy-like aptamers, regulatable aptamers, multivalent/agonistic aptamers, and aptamers that act as delivery vehicles [5]. </p> | ||
- | + | </br> | |
<p>By designing these different aptamers into our RNA scaffold, we can endow our scaffold various potential applications in therapeutics and/or diagnostics. </p> | <p>By designing these different aptamers into our RNA scaffold, we can endow our scaffold various potential applications in therapeutics and/or diagnostics. </p> | ||
- | + | </br> | |
<p>For instance, designing inhibitory aptamers that targets VEGF into our RNA scaffold can be used to treat the wet age-related macular degeneration and that has been approved by the FDA in December 2004. </p> | <p>For instance, designing inhibitory aptamers that targets VEGF into our RNA scaffold can be used to treat the wet age-related macular degeneration and that has been approved by the FDA in December 2004. </p> | ||
- | + | </br> | |
<p>Designing Decoy-like aptamers that can mimic the target sequce of the proteins into our RNA scaffold can be used as decoys to inhibit binding of transcriptional factors such as HIV-tat, NF-κB, and E2F to their cognate sequences on DNA and thus prevent transcription of target genes and may result in powerful therapeutics for treating many human pathologies. </p> | <p>Designing Decoy-like aptamers that can mimic the target sequce of the proteins into our RNA scaffold can be used as decoys to inhibit binding of transcriptional factors such as HIV-tat, NF-κB, and E2F to their cognate sequences on DNA and thus prevent transcription of target genes and may result in powerful therapeutics for treating many human pathologies. </p> | ||
- | + | </br> | |
<p>Designing aptamers behavior as delivery tools into our RNA scaffold can be used to deliver not only some siRNAs to target cells but also toxins, radioisotopes, and chemotherapeutic agents encapsulated in nanoparticles. </p> | <p>Designing aptamers behavior as delivery tools into our RNA scaffold can be used to deliver not only some siRNAs to target cells but also toxins, radioisotopes, and chemotherapeutic agents encapsulated in nanoparticles. </p> | ||
- | + | </br> | |
<h2>References: </h2> | <h2>References: </h2> | ||
- | <p> [1] Jeremy S. Paige, Karen Y. Wu, Samie R. Jaffrey, RNA Mimics of Green Fluorescent Protein science, 2011 vol 333, 642-646. </ | + | <p class="ref"> [1] Jeremy S. Paige, Karen Y. Wu, Samie R. Jaffrey, RNA Mimics of Green Fluorescent Protein science, 2011 vol 333, 642-646. </br> |
- | + | [2] Josef Wachtveitlb, Joachim W. Engels, ect. RNA as scaffold for pyrene excited complexes, Bioorganic & Medicinal Chemistry 16 (2008) 19-26. </br> | |
- | + | [3] Mitchell Guttman, John L. Rinn. Modular regulatory principles of large non-coding RNAs. Nature. 2012 Feb 15;482(7385):339-46. </br> | |
- | + | [4] Anke Hunsicker, Markus Steber, ect. An RNA Aptamer that Induces Transcription, Chemistry & Biology, 2009,Volume 16, Issue 2, 173–180. </br> | |
- | + | [5] Kristina W. Thiel and Paloma H. Giangrande, Therapeutic Applications of DNA and RNA Aptamers. Oligonucleotides, 2009, Volume 19, Number 3, 209-222. </br> | |
- | + | [6] Thodey, K. & Smolke, C.D. Bringing It Together with RNA. Science 333, 412-413 (2011). </p> | |
- | + | ||
</div> | </div> | ||
</div><!-- end .acc_container --> | </div><!-- end .acc_container --> |