Team:Tsinghua-D/Project.html
From 2012.igem.org
(22 intermediate revisions not shown) | |||
Line 40: | Line 40: | ||
background-color: #BF7506; | background-color: #BF7506; | ||
filter: Alpha(Opacity=30); | filter: Alpha(Opacity=30); | ||
+ | } | ||
+ | #SOM { | ||
+ | font-size: 12pt; | ||
+ | background-color: rgba(255, 255, 0, 0.5); | ||
} | } | ||
</style> | </style> | ||
Line 55: | Line 59: | ||
<p align="center"><strong>CHEN Huaiqing1, CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI Tianyi1, LI Zhangqinang1, PENG Liying2, SUN Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE Hengyi1, YANG Tianfang2, SHI Binbin2,</strong><strong>※</strong><strong> and DING Hongxu2,</strong><strong>※</strong><strong> </strong></p> | <p align="center"><strong>CHEN Huaiqing1, CHEN Zheqin2, FAN Xiao2, LI Renkuan2, LI Tianyi1, LI Zhangqinang1, PENG Liying2, SUN Xiaochen2, WANG Xuan2, WANG Zhipeng2, XIE Hengyi1, YANG Tianfang2, SHI Binbin2,</strong><strong>※</strong><strong> and DING Hongxu2,</strong><strong>※</strong><strong> </strong></p> | ||
<p><strong> </strong></p> | <p><strong> </strong></p> | ||
- | < | + | <ol> |
<li><strong>School of Life Science, Tsinghua University</strong></li> | <li><strong>School of Life Science, Tsinghua University</strong></li> | ||
<li><strong>iGEM Tsinghua-D team, Tsinghua University</strong></li> | <li><strong>iGEM Tsinghua-D team, Tsinghua University</strong></li> | ||
- | </ | + | </ol> |
- | <p><strong>※</strong><strong>. To whom correspondence should be addressed, SH</strong><strong>I Binbin, </strong><a href="mailto:ltbyshi@gmail.com"><strong>ltbyshi@gmail.com</strong></a><strong>; DING Hongxu, </strong><a href="mailto:poulainding@163.com"><strong>poulainding@163.com</strong></a><strong>.</strong><strong> </strong></p> | + | <p><strong> ※</strong><strong>. To whom correspondence should be addressed, SH</strong><strong>I Binbin, </strong><a href="mailto:ltbyshi@gmail.com"><strong>ltbyshi@gmail.com</strong></a><strong>; DING Hongxu, </strong><a href="mailto:poulainding@163.com"><strong>poulainding@163.com</strong></a><strong>.</strong><strong> </strong></p> |
- | < | + | |
- | This article can be downloaded | + | <div align="center" id="SOM"> |
- | <p align=" | + | <p align="left" ><strong><br> |
- | <p align=" | + | This article can be downloaded from <u><a href="http://www.htys.org/extra/igem2012/doc/article.pdf">HERE</a></u> (PDF).</strong><br /><br /></p> |
- | <p align=" | + | <p align="left" ><strong> Supporting onl</strong><strong>ine materials can be downloaded from <u><a href="http://www.htys.org/extra/igem2012/doc/som.pdf">HERE</a></u> (PDF).</strong><br /><br /></p> |
- | <p><br> | + | <p align="left" ><strong> A demo for RNAThermo can be found <u><a href="https://2012.igem.org/Team:Tsinghua-D/Demo.html">HERE</a></u>.</strong><br /><br /></p> |
+ | <p align="left" ><strong> RNAThermo can be downloaded from <u><a href="http://www.htys.org/extra/igem2012/software/RNAThermo.zip">HERE</a></u>.</strong><br /><br /></p> | ||
+ | </div> | ||
+ | |||
+ | <p align="center"><a href="https://static.igem.org/mediawiki/2012/c/c9/THD_Figures_big.png"><img src="https://static.igem.org/mediawiki/2012/1/1b/THD_Figures.png" /></a></p> | ||
+ | <p align="left"> </p> | ||
+ | <p><br /> | ||
<strong>Abstract</strong><strong> </strong>The first software that designs temperature-sensing regulatory RNA – RNAThermo is presented in this article. Parameters were set and several temperature-sensing regulatory RNA sequences were given by the RNAThermo. The designed RNAs have been verified both as to on the structural and functional aspects. RNAThermo’s potential application in the fermentation industry is discussed.<strong> </strong></p> | <strong>Abstract</strong><strong> </strong>The first software that designs temperature-sensing regulatory RNA – RNAThermo is presented in this article. Parameters were set and several temperature-sensing regulatory RNA sequences were given by the RNAThermo. The designed RNAs have been verified both as to on the structural and functional aspects. RNAThermo’s potential application in the fermentation industry is discussed.<strong> </strong></p> | ||
<p><em>Keywords:</em> RNA Thermometer, Computer, Design</p> | <p><em>Keywords:</em> RNA Thermometer, Computer, Design</p> | ||
Line 80: | Line 90: | ||
</blockquote> | </blockquote> | ||
<ul><li><blockquote><p align="center"><img src="https://static.igem.org/mediawiki/2012/7/73/Project-figure1.png" width="273" height="327"></p> | <ul><li><blockquote><p align="center"><img src="https://static.igem.org/mediawiki/2012/7/73/Project-figure1.png" width="273" height="327"></p> | ||
- | <p align=" | + | <p align="left"><strong>Figure 1. </strong>Structural change of RNAT’s according to the environmental temperature. The SD stands for Shine-Dalgarno sequence, which is recognized and bind by ribosome to initiate translation. The AUG stands for start codon, from where the translation begins.</p> |
<p>One example for this mechanism is the regulation of <em>E.Coli’</em>s <em>rpoH</em> gene <strong>(Figure 2)</strong>. Responding to environmental temperature change, <em>rpoH</em> gene regulates the expression of the heat shock protein. Low temperature (30℃) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding. High temperature (42℃) disrupts the bend and initiates the process of translation <strong>(3)</strong>.</p> | <p>One example for this mechanism is the regulation of <em>E.Coli’</em>s <em>rpoH</em> gene <strong>(Figure 2)</strong>. Responding to environmental temperature change, <em>rpoH</em> gene regulates the expression of the heat shock protein. Low temperature (30℃) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding. High temperature (42℃) disrupts the bend and initiates the process of translation <strong>(3)</strong>.</p> | ||
<p align="center"><img src="https://static.igem.org/mediawiki/2012/0/05/Project-figure2.png" width="448" height="662"> </p> | <p align="center"><img src="https://static.igem.org/mediawiki/2012/0/05/Project-figure2.png" width="448" height="662"> </p> | ||
- | <p align=" | + | <p align="left"><strong>Figure 2.</strong> <strong>a. </strong>Formation of stem III in the <em>rpoH</em> transcript at low temperatures (30 °C) induces a bend in the ribosome-binding site (RBS)-associated downstream box (DB) region, thereby interfering with ribosome binding. <strong>b. </strong>A rise in temperature to 42 °C opens stem III and stem I of the <em>rpoH</em> mRNA, liberates the AUG start codon and DB region, facilitates ribosome binding.</p> |
<p align="left">Inspired by such a mechanism, our group designed a series of RNATs whose SD sequence will have trap-release structural change according to the environmental temperature. The following is the schematic diagram of the RNATs we designed <strong>(Figure 3)</strong>:</p> | <p align="left">Inspired by such a mechanism, our group designed a series of RNATs whose SD sequence will have trap-release structural change according to the environmental temperature. The following is the schematic diagram of the RNATs we designed <strong>(Figure 3)</strong>:</p> | ||
<p align="center"><img src="https://static.igem.org/mediawiki/2012/c/c3/Project-figure3.png" width="99" height="306"></p> | <p align="center"><img src="https://static.igem.org/mediawiki/2012/c/c3/Project-figure3.png" width="99" height="306"></p> | ||
Line 102: | Line 112: | ||
<p align="left">The first step in verification the <em>in silico </em>design is testing the designed structure <em>in vitro</em>. In-line probing method is adapted to measure the RNATs’ structure <strong>(10)</strong>. The results are as shown in <strong>Figure 5</strong>.</p> | <p align="left">The first step in verification the <em>in silico </em>design is testing the designed structure <em>in vitro</em>. In-line probing method is adapted to measure the RNATs’ structure <strong>(10)</strong>. The results are as shown in <strong>Figure 5</strong>.</p> | ||
<p align="center"> </p> | <p align="center"> </p> | ||
- | <p align="center"><strong>Figure 5</strong></p> | + | <p align="center"><img src="https://static.igem.org/mediawiki/2012/f/f7/In-line_probing.JPG" /></p> |
+ | <p align="left"><strong>Figure 5</strong> Result of the in-line probing. The sequence of the RNAT is 5’-GAAUACAUGUUAAUUAUGCCAUCCAGGCAUACAGAAGAAGUUAAU-3’ and the regulation temperature of the RNAT is 39.5℃. RNAT loaded in lane 1, 2, 3 was incubated at 46℃ for 20h, 26h and 32h. RNAT loaded in lane 4, 5, 6 was incubated at 42℃ for 20h, 26h and 32h. RNAT loaded in lane 7, 8, 9 was incubated at 37℃ for 20h, 26h and 32h. The red boxes mark sections that melt when temperature rises.</p> | ||
+ | <p align="left">When temperature rises, sections marked by the red boxes melt thus bands appear. The results show strong evidence that the designed RNATs can fold into desired secondary structure.</p> | ||
<p align="left"> </p> | <p align="left"> </p> | ||
+ | |||
<p align="left"><strong>Verification of the designed RNATs’ temperature-sensing regulatory function</strong></p> | <p align="left"><strong>Verification of the designed RNATs’ temperature-sensing regulatory function</strong></p> | ||
<p align="left">Then, rectification of the temperature-response regulatory function <em>in vivo</em> should be taken in verification of the <em>in silico </em>design. GFP is adapted as reporter gene in measuring the RNATs’ temperature-response regulatory function. The results are shown in <strong>Figure 6</strong>.</p> | <p align="left">Then, rectification of the temperature-response regulatory function <em>in vivo</em> should be taken in verification of the <em>in silico </em>design. GFP is adapted as reporter gene in measuring the RNATs’ temperature-response regulatory function. The results are shown in <strong>Figure 6</strong>.</p> | ||
<p align="center"><img src="https://static.igem.org/mediawiki/2012/6/6d/Project-figure6.png" width="486" height="48"> </p> | <p align="center"><img src="https://static.igem.org/mediawiki/2012/6/6d/Project-figure6.png" width="486" height="48"> </p> | ||
- | <p align="center"><strong>Figure 6</strong></p> | + | <p align="center"><strong>Figure 6</strong> Schematic diagram of ‘RNAT + GFP’ gene.</p> |
+ | <p align="left">E.Coli were cultured in 30℃ until they reached stationary phrase. Then the E.Coli were divided into two flasks. For the experimental group, a 45℃ heat shock was exerted to the E.Coli. For the control group, the temperature remained 30℃. Photos were taken after a two-hour adjustment. Two RNAT sequences were tested and the results are shown in <strong>Figure 8</strong> and <strong>Figure 9</strong>.</p> | ||
+ | <p align="center"><img src="https://static.igem.org/mediawiki/2012/4/4e/R3_report1.png" /></p> | ||
+ | <p align="left"><strong>Figure 8</strong> Result of the verification of the RNAT’s regulatory function of the RNAT. The sequence is 5’-ACACGGAUCUACUAGCGUGAAUUUAUCACGGGAAGAAGUCGCCGUAA-3’. <strong>a</strong>. RNAT + GFP at 30℃. <strong>b</strong>. RNAT + GFP at 45℃. <strong>c</strong>. RNAT Only at 30℃. <strong>d</strong>. RNATOnly at 30℃. <strong>e</strong>. Histogram shows average intensity of the GFP’s luminance.</p> | ||
+ | <p align="left"> </p> | ||
+ | <p align="center"><img src="https://static.igem.org/mediawiki/2012/2/2c/R2-report.png" /></p> | ||
+ | <p align="left"><strong>Figure 9.</strong> Result of the verification of the RNAT’s regulatory function of the RNAT. The sequence is 5’-GAAUACAUGUUAAUUAUGCCAUCCAGGCAUACAGAAGAAGUUAAT-3’. <strong>a</strong>. RNAT + GFP at 30℃. <strong>b</strong>. RNAT + GFP at 45℃. <strong>c</strong>. RNAT Only at 30℃. <strong>d</strong>. RNAT Only at 30℃. <strong>e</strong>. Histogram shows average intensity of the GFP’s luminance.</p> | ||
+ | <p align="left">The results show strong evidence that the designed RNATs can function as desired.</p> | ||
<p align="left"> </p> | <p align="left"> </p> | ||
<p align="left"><strong>Potential Application in Fermentation Industry</strong></p> | <p align="left"><strong>Potential Application in Fermentation Industry</strong></p> | ||
- | <p align="left">Computer aided RNAT design provides a new method for achieving controlled expression of products in fermentation industry. Engineered microorganisms sense a temperature signal and initiate the regulation. | + | <p align="left">Computer aided RNAT design provides a new method for achieving controlled expression of products in fermentation industry. Engineered microorganisms sense a temperature signal and initiate the regulation.<strong>(Figure 10)</strong>.</p> |
<p align="center"> <strong> </strong><img src="https://static.igem.org/mediawiki/2012/2/25/Project-figure7.png" width="657" height="56"><br> | <p align="center"> <strong> </strong><img src="https://static.igem.org/mediawiki/2012/2/25/Project-figure7.png" width="657" height="56"><br> | ||
- | <strong>Figure | + | <strong>Figure 10.</strong> Schematic diagram of ‘RNAT + Signal Peptide + Lysozyme’ gene.</p> |
<p align="left"> </p> | <p align="left"> </p> | ||
<p align="left"><strong>Reference</strong><br> | <p align="left"><strong>Reference</strong><br> |
Latest revision as of 02:52, 27 September 2012
|