Team:Hong Kong-CUHK
From 2012.igem.org
Kpsleung1990 (Talk | contribs) |
|||
(3 intermediate revisions not shown) | |||
Line 4: | Line 4: | ||
<table width="993" border="0" cellspacing="0" cellpadding="0" align="center" style="margin-left:auto; margin-right:auto"> | <table width="993" border="0" cellspacing="0" cellpadding="0" align="center" style="margin-left:auto; margin-right:auto"> | ||
<tr> | <tr> | ||
- | + | ||
- | + | ||
- | + | ||
- | + | <td colspan="2" style="background-color:#FFF; padding:25px"><!-- InstanceBeginEditable name="EditRegion1" --> | |
- | + | <p> </p> | |
- | <p>Although the sensory technology has been deeply explored and implemented in various means, most of the developed sensors are chemically-dependent promoters which regulate downstream gene expression. We exploited the use of halobacterial sensors, the sensory rhodopsins which are sensitive to a wide spectrum of readily available light source and build a series of sensing systems to control cellular movement and gene regulation. This system can be executed as a fundamental part for further applications, such as cell targeting and refining. Furthermore, to counter the safety issues caused by the leakage of bioengineered cells, this sensing method altogether with the CRISPR/Cas sytem can | + | <p class="aloveofthunder" style="line-height:normal; margin-bottom:35px">WELCOME!</p> |
- | <!-- | + | <p><strong><span style="color:#00C;font-size:16px"><em>“Let there be light”</em></span></strong>, it’s the start of our universe. We see the first light from sunrise and wake up. Have you imagined the bacteria can acquire the function of eyes, to “see” the color and respond to it? Our iGEM team applied the knowledge of synthetic biology to engineer the bacteria in order to make them sense different light color and decide to move toward or away from it. To play safe, we proposed a new biosafety approach to control the engineered bacteria from gene level. Below is the abstract of our project and you will find more information in our wiki website!</p> <p> </p> |
+ | <p style="line-height:normal; font-size:36px; margin-bottom:30px">LIGHT OF NO RETURN </p> | ||
+ | <p>Although the sensory technology has been deeply explored and implemented in various means, most of the developed sensors are chemically-dependent promoters which regulate downstream gene expression. We exploited the use of halobacterial sensors, the sensory rhodopsins which are sensitive to a wide spectrum of readily available light source and build a series of sensing systems to control cellular movement and gene regulation. This system can be executed as a fundamental part for further applications, such as cell targeting and refining. Furthermore, to counter the safety issues caused by the leakage of bioengineered cells, this sensing method altogether with the CRISPR/Cas sytem can target and achieve the cleavage of the transformed plasmid under the stimulation of natural light sources. </p> | ||
+ | <!-- InstanceEndEditable --></td> | ||
+ | |||
+ | |||
</tr> | </tr> | ||
</table> | </table> |
Latest revision as of 03:40, 27 September 2012
Check out our FACEBOOK page! |
|
WELCOME! “Let there be light”, it’s the start of our universe. We see the first light from sunrise and wake up. Have you imagined the bacteria can acquire the function of eyes, to “see” the color and respond to it? Our iGEM team applied the knowledge of synthetic biology to engineer the bacteria in order to make them sense different light color and decide to move toward or away from it. To play safe, we proposed a new biosafety approach to control the engineered bacteria from gene level. Below is the abstract of our project and you will find more information in our wiki website!
LIGHT OF NO RETURN Although the sensory technology has been deeply explored and implemented in various means, most of the developed sensors are chemically-dependent promoters which regulate downstream gene expression. We exploited the use of halobacterial sensors, the sensory rhodopsins which are sensitive to a wide spectrum of readily available light source and build a series of sensing systems to control cellular movement and gene regulation. This system can be executed as a fundamental part for further applications, such as cell targeting and refining. Furthermore, to counter the safety issues caused by the leakage of bioengineered cells, this sensing method altogether with the CRISPR/Cas sytem can target and achieve the cleavage of the transformed plasmid under the stimulation of natural light sources. |
Home | Team | Project | Biobricks | Human Practice | Safety | Documentation | Acknowledgement
Address: Rm. 184, Science Centre, CUHK Copyright © 2012 Apycom jQuery Menus |