Team:Trieste/project/modeling

From 2012.igem.org

(Difference between revisions)
(add modeling)
 
(24 intermediate revisions not shown)
Line 2: Line 2:
<html>
<html>
<div id="body">
<div id="body">
-
<div id="container"> <!-- start container -->  
+
    <div id="container"> <!-- start container -->  
-
</html>{{Team:Trieste/menu}}<html>
+
</html>{{Team:Trieste/menu}}<html>
-
<div id="content"> <!-- start content -->
+
<div id="content"> <!-- start content -->
-
<h1 id="h1_lf" class="main_tit"><div>Modeling</div></h1>
+
    <h1 id="h1_lf" class="main_tit"><div>Modeling</div></h1>
-
<h1 id="h1_rt" class="main_tit"><div>More</div></h1>
+
    <h1 id="h1_rt" class="main_tit"><div>More</div></h1>
-
<div id="box_main"> <!-- start box_main -->
+
    <div id="box_main"> <!-- start box_main -->
-
<div class="box_contenuti">
+
<div class="box_contenuti">
-
<script type="text/javascript"
+
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
-
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+
</script>
-
</script>
+
<h2>Assumptions</h2>
-
<h2>Model description</h2>
+
<p>
-
<p>
+
    <ul class="fancy">
-
We chose to use a deterministic, empirical model because it gives simple,
+
<li>No interaction with living tissue</li>
-
clean solutions.
+
    </ul>
-
</p>  
+
</p>
-
<p>
+
<h2>Model description</h2>
-
The model is composed of 6 differential equations, each one describing
+
<p>
-
the concentration of a substance inside or outside the bacteria.
+
    We chose to use a deterministic, empirical model because it gives simple,
-
</p>
+
    clean solutions.
-
<p>
+
</p>  
-
All the $\delta$ parameters represent the variable's decay over time.
+
<p>
-
</p>
+
    The model is composed of 6 variables with 15 parameters. Each variable describes
-
<p>
+
    the concentration of a substance inside or outside the bacteria.
-
The first equation, describing the bacteria concentration in the media (bacteria growth) is based
+
    The variables are:
-
on the logistics function:
+
    <ul class="fancy">
-
\begin{equation}
+
        <li>\(b\) - bacteria concentration</li>
-
\dot{x} = x (1-x)
+
        <li>\(p\) - CymR concentration</li>
-
\end{equation}
+
        <li>\(c\) - p-cumate concentration</li>
-
We added a term to model bacteria death due to toxin, so the complete equation
+
        <li>\(l_i\) - internal toxin concentration</li>
-
is:
+
        <li>\(l_e\) - external toxin concentration</li>
-
\begin{equation}
+
        <li>\(a\) - antibody concentration</li>
-
\dot{b} = k_1  b  (N - b) - k_2  b  (l_i + l_e)
+
    </ul>
-
\end{equation}
+
    All the \(\delta_i\) parameters represent the variable's decay over time.
-
There are three parameters that control this model's behaviour.
+
</p>
-
The $N$ parameter specifies the maximum concentration of bacteria.
+
<p>
-
The $k_1$ parameter controls the growth speed and the $k_2$ parameter sets how
+
    The first equation, describing the bacteria concentration in the media (bacteria growth) is based
-
powerful the toxin is.
+
    on the logistics function:
-
</p>
+
    \begin{equation}
 +
    \dot{x} = x (1-x)
 +
    \end{equation}
 +
    We added a term to model bacteria death due to toxin, so the complete equation
 +
    is:
 +
    \begin{equation}
 +
    \dot{b} = k_1  b  (N - b) - k_2  b  (l_i + l_e)
 +
    \end{equation}
 +
    There are three parameters that control this model's behaviour.
 +
    The \(N\) parameter specifies the maximum concentration of bacteria.
 +
    The \(k_1\) parameter controls the growth speed and the \(k_2\) parameter sets how
 +
    powerful the toxin is.
 +
</p>
-
<p>
+
<p>
-
The next equation models the CymR concentration inside the bacteria.
+
    The next equation models the CymR concentration inside the bacteria.
-
\begin{equation}
+
    \begin{equation}
-
\dot{p} = k_3 - \delta_1 p - \alpha  p  c
+
    \dot{p} = k_3 - \delta_1 p - \alpha  p  c
-
\end{equation}
+
    \end{equation}
-
The $k_3$ parameter determines the rate of synthesis of CymR and $\alpha$ the rate of cumate ligation.
+
    The \(k_3\) parameter determines the rate of synthesis of CymR and \(\alpha\) the rate of cumate ligation.
-
</p>
+
</p>
-
<p>
+
<p>
-
The p-cumate concentration function is in fact a parameter, because it is
+
    The p-cumate concentration function is in fact a parameter, because it is
-
directly controllable by adding p-cumate into the bacteria solution.
+
    directly controllable by adding p-cumate into the bacteria solution.
-
\begin{equation}
+
    \begin{equation}
-
\dot{c} = k_4 - \delta_2 c
+
    \dot{c} = k_4 - \delta_2 c
-
\end{equation}
+
    \end{equation}
-
The $k_4$ parameter models p-cumate increase (adding p-cumate at a steady rate).
+
    The \(k_4\) parameter models p-cumate increase (adding p-cumate at a steady rate).
-
</p>
+
</p>
-
<p>
+
<p>
-
We use two equations to better model the toxin concentration, taking into
+
    We use two equations to better model the toxin concentration, taking
-
account the concentration of toxin both inside and outside the bacteria. The equation
+
    into account the concentration of toxin both inside and outside
-
for the inside concentration is a Hill equation with a decay term. We used
+
    the bacteria. The equation for the inside concentration is a Hill
-
it because the concentration increases until the saturation is
+
    equation for the inhibitory effect of CymR (\(p\)) on the biosynthesis
-
reached, and from then on the bacteria stops producing the toxin. The point of
+
    of the toxin, and the decay term. We used
-
saturation is never reached, though, because the bacteria dies due to the
+
    it because the concentration increases until the saturation is reached,
-
toxin itself. The outside equation is the most complex one; the outside toxin
+
    and from then on the bacteria stops producing the toxin. The outside
-
concentration depends on bacteria death: when the bacteria dies, all the toxin
+
    equation is the most complex
-
it has produced is released outside.
+
    one; the outside toxin concentration depends on bacteria death: when
-
\begin{align}
+
    the bacteria dies, all the toxin it has produced is released outside.
-
\dot{l_i} &= \frac{A}{k_5 + p} -\delta_3  l_i \\  
+
    \begin{align}
-
\dot{l_e} &= v (l_i + l_e) b l_i - \delta_4 l_e
+
    \dot{l_i} &= \frac{A}{k_5 + p} -\delta_3  l_i \\  
-
\end{align}
+
    \dot{l_e} &= v (l_i + l_e) b l_i - \delta_4 l_e
-
The $A$ parameter sets the maximum toxin concentration inside the bacteria, while
+
    \end{align}
-
the $v$ parameter takes into account the toxin dilution in the bacteria
+
    The \(A\) parameter sets the maximum toxin concentration inside the bacteria, while
-
solution.
+
    the \(v\) parameter takes into account the toxin dilution in the bacteria
-
</p>
+
    solution and the toxin strength.
-
<p>
+
</p>
-
Last but not least, the antibody density, which we suppose always increasing in
+
<p>
-
time.
+
    Last but not least, the antibody density, which we suppose always increasing in
-
\begin{equation}
+
    time.
-
\dot{a} = k_6 - \delta_5  a
+
    \begin{equation}
-
\end{equation}
+
    \dot{a} = k_6 - \delta_5  a
-
</p>
+
    \end{equation}
-
</div>
+
</p>
 +
<h2>Tools</h2>
 +
<p>
 +
    We decided to use Octave, the open source alternative to
 +
    Matlab as the framework for our model.
 +
</p>
 +
<h2>Simulations</h2>
 +
<p>
 +
<h3>No cumate</h3>
 +
This is a simulation of our model with no cumate added. We can see the bacteria growing,
 +
producing antibodies, and the toxin remains under the kill threshold.<br/><br/>
 +
    <img src="https://static.igem.org/mediawiki/2012/9/9f/Trieste-No_cumato.png" alt="Model without cumato" /><br/>
 +
</p>
 +
<p>
 +
<br/>
 +
                                <h3>With cumate</h3>
 +
This is a simulation with cumate added. We can see the initial bacteria growth, but then
 +
the toxin concentration rises above the toxic levels and bacteria start dying. Eventually,
 +
antibody concentration starts to lower as the bacteria die, and the toxin in the bacteria medium rises exponentially.<br/><br/>
 +
    <img src="https://static.igem.org/mediawiki/2012/5/55/Trieste-Cumato.png" alt="Model with cumato" />
 +
</p>
 +
    </div>
</div> <!-- end box_main -->
</div> <!-- end box_main -->
<div id="box_right"> <!-- start box_right -->
<div id="box_right"> <!-- start box_right -->
-
<ul id="sub_menu">
+
    <ul id="sub_menu">
-
<li><a href="#">Sotto menu 1</a></li>
+
 
-
<li class="select"><a href="#">Sotto menu 2</a></li>
+
<li><a href="https://2012.igem.org/Team:Trieste/project">Abstract</a></li>
-
<li><a href="#">Sotto menu 3</a></li>
+
<li><a href="https://2012.igem.org/Team:Trieste/project/overview">Project Overview</a></li>              
-
<li><a href="#">Sotto menu 4</a></li>
+
 
-
<li><a href="#">Sotto menu 5</a></li>
+
<li><a href="https://2012.igem.org/Team:Trieste/project/applications">Applications</a></li>        
-
</ul>
+
<li class="select"><a href="https://2012.igem.org/Team:Trieste/project/modeling">Modeling</a></li>
-
<img src="https://static.igem.org/mediawiki/2012/b/b0/Team_trieste.jpg" alt="Team iGEM 2012" id="igem_team" />
+
                        <li><a href="https://2012.igem.org/Team:Trieste/project/mainres">Main Results</a></li>  
-
<div class="box_contacts">
+
-
<h2>Contact us</h2>
+
    </ul>
-
<p>For other information, write to:</p>
+
    <img src="https://static.igem.org/mediawiki/2012/b/b0/Team_trieste.jpg" alt="Team iGEM 2012" id="igem_team" />
-
<a href="mailto:igem2012@gmail.com" class="btn">igem2012@gmail.com</a>
+
    <div class="box_contacts">
-
<div class="social">
+
<h2>Contact us</h2>
-
Follow us also:
+
<p>For other information, write to:</p>
-
<a href="https://www.facebook.com/IGEMUNITS?ref=ts" target="_blank"><img src="https://static.igem.org/mediawiki/2012/f/f4/Ico_fb.png" alt="Facebook" class="fb" /></a>
+
<a href="mailto:igem2012@gmail.com" class="btn">igem2012@gmail.com</a>
-
<a href="https://twitter.com/igemunits" target="_blank"><img src="https://static.igem.org/mediawiki/2012/2/21/Ico_twitter.png" alt="twitter" class="tw" /></a>
+
<div class="social">
-
</div>
+
    Follow us also:
-
</div>
+
    <a href="https://www.facebook.com/IGEMUNITS?ref=ts" target="_blank"><img src="https://static.igem.org/mediawiki/2012/f/f4/Ico_fb.png" alt="Facebook" class="fb" /></a>
 +
    <a href="https://twitter.com/iGEMTrieste" target="_blank"><img src="https://static.igem.org/mediawiki/2012/2/21/Ico_twitter.png" alt="twitter" class="tw" /></a>
 +
</div>
 +
    </div>
</div> <!-- end box_right -->
</div> <!-- end box_right -->
</html>{{Team:Trieste/footer}}<html>
</html>{{Team:Trieste/footer}}<html>
-
<!-- end content is included in template -->
+
    <!-- end content is included in template -->
</div> <!-- end container -->
</div> <!-- end container -->
-
</div>
+
    </div>
</html>
</html>

Latest revision as of 01:32, 27 September 2012

Modeling

More

Assumptions

  • No interaction with living tissue

Model description

We chose to use a deterministic, empirical model because it gives simple, clean solutions.

The model is composed of 6 variables with 15 parameters. Each variable describes the concentration of a substance inside or outside the bacteria. The variables are:

  • \(b\) - bacteria concentration
  • \(p\) - CymR concentration
  • \(c\) - p-cumate concentration
  • \(l_i\) - internal toxin concentration
  • \(l_e\) - external toxin concentration
  • \(a\) - antibody concentration
All the \(\delta_i\) parameters represent the variable's decay over time.

The first equation, describing the bacteria concentration in the media (bacteria growth) is based on the logistics function: \begin{equation} \dot{x} = x (1-x) \end{equation} We added a term to model bacteria death due to toxin, so the complete equation is: \begin{equation} \dot{b} = k_1 b (N - b) - k_2 b (l_i + l_e) \end{equation} There are three parameters that control this model's behaviour. The \(N\) parameter specifies the maximum concentration of bacteria. The \(k_1\) parameter controls the growth speed and the \(k_2\) parameter sets how powerful the toxin is.

The next equation models the CymR concentration inside the bacteria. \begin{equation} \dot{p} = k_3 - \delta_1 p - \alpha p c \end{equation} The \(k_3\) parameter determines the rate of synthesis of CymR and \(\alpha\) the rate of cumate ligation.

The p-cumate concentration function is in fact a parameter, because it is directly controllable by adding p-cumate into the bacteria solution. \begin{equation} \dot{c} = k_4 - \delta_2 c \end{equation} The \(k_4\) parameter models p-cumate increase (adding p-cumate at a steady rate).

We use two equations to better model the toxin concentration, taking into account the concentration of toxin both inside and outside the bacteria. The equation for the inside concentration is a Hill equation for the inhibitory effect of CymR (\(p\)) on the biosynthesis of the toxin, and the decay term. We used it because the concentration increases until the saturation is reached, and from then on the bacteria stops producing the toxin. The outside equation is the most complex one; the outside toxin concentration depends on bacteria death: when the bacteria dies, all the toxin it has produced is released outside. \begin{align} \dot{l_i} &= \frac{A}{k_5 + p} -\delta_3 l_i \\ \dot{l_e} &= v (l_i + l_e) b l_i - \delta_4 l_e \end{align} The \(A\) parameter sets the maximum toxin concentration inside the bacteria, while the \(v\) parameter takes into account the toxin dilution in the bacteria solution and the toxin strength.

Last but not least, the antibody density, which we suppose always increasing in time. \begin{equation} \dot{a} = k_6 - \delta_5 a \end{equation}

Tools

We decided to use Octave, the open source alternative to Matlab as the framework for our model.

Simulations

No cumate

This is a simulation of our model with no cumate added. We can see the bacteria growing, producing antibodies, and the toxin remains under the kill threshold.

Model without cumato


With cumate

This is a simulation with cumate added. We can see the initial bacteria growth, but then the toxin concentration rises above the toxic levels and bacteria start dying. Eventually, antibody concentration starts to lower as the bacteria die, and the toxin in the bacteria medium rises exponentially.

Model with cumato

Team iGEM 2012

Contact us

For other information, write to:

igem2012@gmail.com
Università degli studi di Trieste ICGEB Illy Fondazione Cassa di Risparmio
iGEM 2012 iGEM 2012 iGEM 2012 iGEM 2012 iGEM 2012 iGEM 2012
HTML Hit Counter