Team:Wageningen UR/InsideModification ProjectOverview

From 2012.igem.org

(Difference between revisions)
(Inside Modification)
(Inside Modification)
 
(One intermediate revision not shown)
Line 1: Line 1:
== Inside Modification ==
== Inside Modification ==
<p align="justify">
<p align="justify">
-
Since virus-like particles (VLPs) lack genetic content, they enclose an empty space. This space can be filled with proteins such as antibiotics, hormones, and all sorts of farmaceuticals. Modifications on the inside of the VLPs can increase binding affinity to the loaded substance. One of the modifications we pursue is adding a coil to the protein subunits at any location that is exposed on the inside of the VLP. In our case, this is a fusion to either the N-terminal or the C-terminal. The coils will facilitate strong attachment to the substance which carries the opposite coil.
+
Since virus-like particles (VLPs) lack genetic content, they enclose an empty space. This space can be filled with proteins such as antibiotics, hormones, and all sorts of pharmaceuticals. Modifications on the inside of the VLPs can increase binding affinity to the loaded substance. The first modifications we pursue is adding the K-coil to the protein subunits at any location that is exposed on the inside of the VLP. The coils will facilitate strong attachment to the substance which is carrying an oppositely charged coil.
-
<br><br>
+
 
-
Another way to open up more options for loading our VLPs, is to make a change in the interior's charge. Normally, the interior of a VLP is positively charged, facilitating interaction with negatively charged DNA/RNA molecules. By changing the amino acid sequence that is located on the interior of a VLP, the positive charge can be changed into a negative charge. A VLP with a negatively charged interior can be loaded with all sorts of positively charged molecules, such as polymeres, metals, etc.
+
The second modification we aim to make is a change in the interior's charge, which is another way to open up more options for loading our VLPs.
</p>
</p>
[[Team:Wageningen_UR/InsideModification|Read more]]
[[Team:Wageningen_UR/InsideModification|Read more]]

Latest revision as of 08:25, 26 September 2012

Inside Modification

Since virus-like particles (VLPs) lack genetic content, they enclose an empty space. This space can be filled with proteins such as antibiotics, hormones, and all sorts of pharmaceuticals. Modifications on the inside of the VLPs can increase binding affinity to the loaded substance. The first modifications we pursue is adding the K-coil to the protein subunits at any location that is exposed on the inside of the VLP. The coils will facilitate strong attachment to the substance which is carrying an oppositely charged coil. The second modification we aim to make is a change in the interior's charge, which is another way to open up more options for loading our VLPs.

Read more