Team:Johns Hopkins-Wetware/Project

From 2012.igem.org

(Difference between revisions)
(Prototype team page)
 
(32 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
 
-
 
<html>
<html>
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
</div></div></div></div></div></div></div></div></div></p>
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
<head>
-
This is a template page. READ THESE INSTRUCTIONS.
+
<title>JHU iGEM 2012</title>
-
</div>
+
<link rel="shortcut icon" href="https://static.igem.org/mediawiki/2012/b/be/Bluejay_2_32x32x32.png">
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
<link rel="stylesheet" type="text/css" href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/templates/css/style?action=raw&amp;ctype=text/css" />
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
+
-
</div>
+
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You <strong>MUST</strong> have all of the pages listed in the menu below with the names specified. PLEASE keep all of your pages within your teams namespace.
+
-
</div>
+
-
</div>
+
-
</html>
+
-
<!-- *** End of the alert box *** -->
 
 +
</head>
 +
<body>
 +
<div id="global_container">
 +
<div id="header">
 +
<div id = "igem-logo">
 +
<a href="https://2012.igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/2012/0/00/Igem-logo-blue.png" width="100px"/></a>
 +
</div>
 +
<div id="header_logo">
 +
<a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware"><img src="https://static.igem.org/mediawiki/2012/8/8f/Jhuigem2012header.png"/></a>
 +
</div> <!--end div header_logo-->
 +
<ul id="navbar">
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/Team">team</a>
 +
</li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/Project">projects</a>
 +
<ul>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/Project">At a Glance</a></li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/etohproject">Ethanol control</a></li>
 +
                                                        <li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/etohproject#modelanchor">Modeling</a></li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/lightproject">Optogenetic control</a></li>
 +
                                                       
 +
</ul>
 +
</li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/etohnotebook">notebooks</a>
 +
<ul>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/etohnotebook">Ethanol control</a></li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/lightnotebook">Optogenetic control</a></li>
 +
</ul>
 +
</li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/yeastgoldengate">Yeast Golden Gate</a>
 +
                                              <ul>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/Parts">Parts</a></li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/yeastgoldengate">RFC88</a></li>
 +
</ul>
 +
</li>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/humanpractice">human practice</a>
 +
<ul>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/thepartscourselabmanual">Lab Manual</a></li>
 +
</ul>
 +
<li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/Safety">safety</a>
 +
</li>
 +
                                        <li><a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/requirements">Medal Fulfillment</a></li>
 +
</ul>
 +
</div> <!--end div header-->
 +
<div class="content_container">
 +
<div class="content_header">
 +
<img src="https://static.igem.org/mediawiki/2012/0/0c/At-a-glance.png" alt="At a Glance"/>
 +
</div>
 +
<div class="content">
 +
<img src="https://static.igem.org/mediawiki/2012/e/e0/OptiYeast-slideshow-pluslogo-small.png" class="wrap right" width="500px">
 +
<p>
 +
Synthetic biology is helping to solve problems such as malnutrition and disease through the production of compounds like vitamins and medications. Using microorganisms to produce these compounds can provide a most cost-effective solution and thus make them more readily available. This year, the Johns Hopkins wetware team presents tools to control cellular processes in yeast, which can be applied to the optimization of non-native biosynthetic pathways used in cell-based manufacturing of compounds. Our two projects are an <b>ethanol level self-regulation system</b>, and a system for <b>optogenetic control of protein function</b>.
 +
</p>
 +
<div class="spacer"></div>
 +
</div>
 +
<div class="content_header">
 +
<img src="https://static.igem.org/mediawiki/2012/f/ff/Ethanol-level-self-regulation.png" alt="Ethanol Level Self-Regulation" class="right"/>
 +
</div>
 +
<div class="content">
 +
<a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/etohproject"><img src="https://static.igem.org/mediawiki/2012/3/33/Ethanol-splash.png" class="wrap left" width="500px"></a>
 +
<p>
 +
In industrial fermentation of valuable compounds too costly for organic synthesis, the buildup of toxic intermediates and byproducts keeps productivity from reaching its full potential. In yeast, ethanol toxicity is the major chemical stress. To reduce ethanol stress, we constructed an ethanol-level self-regulation system consisting of the human cytochrome p450 CYP2E1 driven by a library of ethanol-induced promoters. CYP2E1 catalyzes the conversion of ethanol to acetaldehyde and then to acetate. When the ethanol level exceeds the optimal level, expression of CYP2E1 is triggered, which breaks down the excess ethanol. Using this tool, we have demonstrated a way to decrease ethanol concentration under fermentation conditions without negatively impacting cell growth.
 +
</p>
 +
</div>
 +
<div class="spacer"></div>
 +
<div class="content_header">
 +
<img src="https://static.igem.org/mediawiki/2012/9/95/Optogenetic-protein-control.png" alt="Optogenetic Protein Control" class="left"/>
 +
</div>
 +
<div class="content">
 +
<a href="https://2012.igem.org/Team:Johns_Hopkins-Wetware/lightproject"><img src="https://static.igem.org/mediawiki/2012/a/af/Optogenetic-protein-control-diagram.png
 +
" class="wrap right" width="500px"></a>
 +
<p>
 +
The ability to inducibly control protein function in vivo can be used to regulate flux through a biosynthetic pathway, minimizing stress on the host cell and maximizing production of a desired compound. Here we use the ePDZ/LOVpep light-induced dimerization system to demonstrate the utility of protein control on pathway engineering in S. cerevisaie. The use of light as a control mechanism has the advantages of being fast-acting, reversible, and amenable to automation in industrial applications. The ePDZ/LOVpep system is particularly advantageous in the setting of optimization of biosynthetic pathway flux as it is tunable. We have envisioned two useful scenarios and built a system to test our ideas: (i) controlling the level of enzymatic activity of a particular protein in a pathway; and (ii) controlling the co-localization of proteins that function sequentially in a pathway.
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
</p>
-
!align="center"|[[Team:Johns_Hopkins-Wetware|Home]]
+
</div>
-
!align="center"|[[Team:Johns_Hopkins-Wetware/Team|Team]]
+
<div class="spacer">
-
!align="center"|[https://igem.org/Team.cgi?year=2012&team_name=Johns_Hopkins-Wetware Official Team Profile]
+
<a href="#header"><img src="https://static.igem.org/mediawiki/2012/5/5f/To-the-top.png" alt="to the top"/></a>
-
!align="center"|[[Team:Johns_Hopkins-Wetware/Project|Project]]
+
</div>
-
!align="center"|[[Team:Johns_Hopkins-Wetware/Parts|Parts Submitted to the Registry]]
+
<div class="content_header2">
-
!align="center"|[[Team:Johns_Hopkins-Wetware/Modeling|Modeling]]
+
</div>
-
!align="center"|[[Team:Johns_Hopkins-Wetware/Notebook|Notebook]]
+
</div> <!--end div content_container-->
-
!align="center"|[[Team:Johns_Hopkins-Wetware/Safety|Safety]]
+
</div> <!--end div global_container-->
-
!align="center"|[[Team:Johns_Hopkins-Wetware/Attributions|Attributions]]
+
</body>
-
|}
+
</html>
-
 
+
-
 
+
-
 
+
-
 
+
-
== '''Overall project''' ==
+
-
 
+
-
Tell us more about your project.  Give us background.  Use this is the abstract of your project.  Be descriptive but concise (1-2 paragraphs)
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Project Details==
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 2 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== The Experiments ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
=== Part 3 ===
+
-
 
+
-
 
+
-
 
+
-
 
+
-
== Results ==
+

Latest revision as of 03:48, 4 October 2012

JHU iGEM 2012
At a Glance

Synthetic biology is helping to solve problems such as malnutrition and disease through the production of compounds like vitamins and medications. Using microorganisms to produce these compounds can provide a most cost-effective solution and thus make them more readily available. This year, the Johns Hopkins wetware team presents tools to control cellular processes in yeast, which can be applied to the optimization of non-native biosynthetic pathways used in cell-based manufacturing of compounds. Our two projects are an ethanol level self-regulation system, and a system for optogenetic control of protein function.

Ethanol Level Self-Regulation

In industrial fermentation of valuable compounds too costly for organic synthesis, the buildup of toxic intermediates and byproducts keeps productivity from reaching its full potential. In yeast, ethanol toxicity is the major chemical stress. To reduce ethanol stress, we constructed an ethanol-level self-regulation system consisting of the human cytochrome p450 CYP2E1 driven by a library of ethanol-induced promoters. CYP2E1 catalyzes the conversion of ethanol to acetaldehyde and then to acetate. When the ethanol level exceeds the optimal level, expression of CYP2E1 is triggered, which breaks down the excess ethanol. Using this tool, we have demonstrated a way to decrease ethanol concentration under fermentation conditions without negatively impacting cell growth.

Optogenetic Protein Control

The ability to inducibly control protein function in vivo can be used to regulate flux through a biosynthetic pathway, minimizing stress on the host cell and maximizing production of a desired compound. Here we use the ePDZ/LOVpep light-induced dimerization system to demonstrate the utility of protein control on pathway engineering in S. cerevisaie. The use of light as a control mechanism has the advantages of being fast-acting, reversible, and amenable to automation in industrial applications. The ePDZ/LOVpep system is particularly advantageous in the setting of optimization of biosynthetic pathway flux as it is tunable. We have envisioned two useful scenarios and built a system to test our ideas: (i) controlling the level of enzymatic activity of a particular protein in a pathway; and (ii) controlling the co-localization of proteins that function sequentially in a pathway.

to the top

Retrieved from "http://2012.igem.org/Team:Johns_Hopkins-Wetware/Project"