Team:RHIT/Safety
From 2012.igem.org
Line 54: | Line 54: | ||
<a href="/Team:RHIT/Outreach">Outreach</a> | <a href="/Team:RHIT/Outreach">Outreach</a> | ||
</div> | </div> | ||
- | + | <div class="rhit-fourthSheet"> | |
<h2>Researcher, Public, and Environmental Safety</h2> | <h2>Researcher, Public, and Environmental Safety</h2> | ||
<p>The Rose-Hulman iGEM team has kept safety a top priority since the very early stages of the project. As a result, any project that might have posed as a significant threat to safety was quickly dismissed. During the planning phase of Checkmate, team members brainstormed lab procedures as well as guidelines for plasmid construction to provide a safe and effective workplace. The team used yeast and E.coli in their project, which are both considered Risk Group 1 microorganisms according to the Laboratory Biosafety Manual by the World Health Organization. A Risk Group 1 organism is defined as “(no or low individual and community risk) A microorganism that is unlikely to cause human or animal disease.” The team’s lab is a Basic-Biosafety Level 1 lab, but contains a few aspects from the other categories. The lab does have controlled access, special waste disposal bins, and some biohazard signs. The lab is a school lab that is shared by many professors and students during the school year. These safety practices are rarely in use, and are more of a precaution.Some of the lab methods require using potentially hazardous chemicals that could cause injury to any one of the researchers. Another potential safety risk for researchers results from dealing with microbial agents. While it is unlikely that a researcher would develop an infection from the strains he or she is working with, contagion is still a possible safety concern. To combat these risks, the team was sure to follow all safety protocols, from aseptic techniques to complete labeling. Proper lab attire was worn at all times in the lab. Procedures such as these were taught by the team’s advisor while in the lab.</p> | <p>The Rose-Hulman iGEM team has kept safety a top priority since the very early stages of the project. As a result, any project that might have posed as a significant threat to safety was quickly dismissed. During the planning phase of Checkmate, team members brainstormed lab procedures as well as guidelines for plasmid construction to provide a safe and effective workplace. The team used yeast and E.coli in their project, which are both considered Risk Group 1 microorganisms according to the Laboratory Biosafety Manual by the World Health Organization. A Risk Group 1 organism is defined as “(no or low individual and community risk) A microorganism that is unlikely to cause human or animal disease.” The team’s lab is a Basic-Biosafety Level 1 lab, but contains a few aspects from the other categories. The lab does have controlled access, special waste disposal bins, and some biohazard signs. The lab is a school lab that is shared by many professors and students during the school year. These safety practices are rarely in use, and are more of a precaution.Some of the lab methods require using potentially hazardous chemicals that could cause injury to any one of the researchers. Another potential safety risk for researchers results from dealing with microbial agents. While it is unlikely that a researcher would develop an infection from the strains he or she is working with, contagion is still a possible safety concern. To combat these risks, the team was sure to follow all safety protocols, from aseptic techniques to complete labeling. Proper lab attire was worn at all times in the lab. Procedures such as these were taught by the team’s advisor while in the lab.</p> | ||
Line 61: | Line 61: | ||
<h2>BioBrick Safety</h2> | <h2>BioBrick Safety</h2> | ||
<p>To ensure the safety of our BioBricks, we consulted the BioBrick standard for regulation of restriction sites when designed the DNA sequence. In addition, *SENTENCE TALKING ABOUT VECTOR KNOCKOUT OF KEY AMINO ACID. By characterizing the BioBricks to their fullest potential, it will allow other participates of iGEM to use our BioBricks in their intended way, optimizing the efficiency of their projects.</p> | <p>To ensure the safety of our BioBricks, we consulted the BioBrick standard for regulation of restriction sites when designed the DNA sequence. In addition, *SENTENCE TALKING ABOUT VECTOR KNOCKOUT OF KEY AMINO ACID. By characterizing the BioBricks to their fullest potential, it will allow other participates of iGEM to use our BioBricks in their intended way, optimizing the efficiency of their projects.</p> | ||
- | <h2>Biosafety Group</h2>Due to having a small biology program, Rose-Hulman Institute of Technology does not have a biosafety group. Instead, safety procedures are integrated into classes by professors. The United States of America has many biosafety rules about working with human cells, but projects that work without human cells, such as Checkmate, are of little concern to the country.</p> | + | <h2>Biosafety Group</h2> |
+ | <p>Due to having a small biology program, Rose-Hulman Institute of Technology does not have a biosafety group. Instead, safety procedures are integrated into classes by professors. The United States of America has many biosafety rules about working with human cells, but projects that work without human cells, such as Checkmate, are of little concern to the country.</p> | ||
<h2>Future Safety</h2> | <h2>Future Safety</h2> | ||
<p>Future iGEM teams can be safe by following appropriate lab safety procedures. When considering their project, future iGEM teams need to be aware that they are creating something new, and should proceed with caution, always keeping safety at the forefront. Specifically, one way to be sure that iGEM projects cannot be a danger to the public or the environment is to include some form of self-destruct. This would make the cells unable to live in a non-lab environment. The DNA could be degenerative over time, or a strain could be dependent on a vital nutrient only found in a laboratory setting.</p> | <p>Future iGEM teams can be safe by following appropriate lab safety procedures. When considering their project, future iGEM teams need to be aware that they are creating something new, and should proceed with caution, always keeping safety at the forefront. Specifically, one way to be sure that iGEM projects cannot be a danger to the public or the environment is to include some form of self-destruct. This would make the cells unable to live in a non-lab environment. The DNA could be degenerative over time, or a strain could be dependent on a vital nutrient only found in a laboratory setting.</p> | ||
+ | </div> |
Revision as of 04:51, 7 September 2012